All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jenetics.ExponentialRankSelector Maven / Gradle / Ivy

There is a newer version: 3.6.0
Show newest version
/*
 * Java Genetic Algorithm Library (jenetics-3.1.0).
 * Copyright (c) 2007-2015 Franz Wilhelmstötter
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Author:
 *    Franz Wilhelmstötter ([email protected])
 */
package org.jenetics;

import static java.lang.Math.pow;
import static java.lang.String.format;
import static org.jenetics.internal.util.Equality.eq;

import org.jenetics.internal.util.Equality;
import org.jenetics.internal.util.Hash;

/**
 * 

* An alternative to the "weak" {@code LinearRankSelector} is to assign * survival probabilities to the sorted individuals using an exponential * function. *

*

P(i)=\left(c-1\right)\frac{c^{i-1}}{c^{N}-1}, *

* where c must within the range {@code [0..1)}. * *

* A small value of c increases the probability of the best phenotypes to * be selected. If c is set to zero, the selection probability of the best * phenotype is set to one. The selection probability of all other phenotypes is * zero. A value near one equalizes the selection probabilities. *

*

* This selector sorts the population in descending order while calculating the * selection probabilities. *

* * @author Franz Wilhelmstötter * @since 1.0 * @version 2.0 */ public final class ExponentialRankSelector< G extends Gene, C extends Comparable > extends ProbabilitySelector { private final double _c; /** * Create a new exponential rank selector. * * @param c the c value. * @throws IllegalArgumentException if {@code c} is not within the range * {@code [0..1)}. */ public ExponentialRankSelector(final double c) { super(true); if (c < 0.0 || c >= 1.0) { throw new IllegalArgumentException(format( "Value %s is out of range [0..1): ", c )); } _c = c; } /** * Create a new selector with default value of 0.975. */ public ExponentialRankSelector() { this(0.975); } /** * This method sorts the population in descending order while calculating the * selection probabilities. (The method {@link Population#populationSort()} is called * by this method.) */ @Override protected double[] probabilities( final Population population, final int count ) { assert(population != null) : "Population can not be null. "; assert(count > 0) : "Population to select must be greater than zero. "; //Sorted population required. population.populationSort(); final double N = population.size(); final double[] probabilities = new double[population.size()]; final double b = (_c - 1.0)/(pow(_c, N) - 1.0); for (int i = 0; i < probabilities.length; ++i) { probabilities[i] = pow(_c, i)*b; } assert (sum2one(probabilities)) : "Probabilities doesn't sum to one."; return probabilities; } @Override public int hashCode() { return Hash.of(getClass()).and(_c).value(); } @Override public boolean equals(final Object obj) { return Equality.of(this, obj).test(s -> eq(_c, s._c)); } @Override public String toString() { return format("%s[c=%f]", getClass().getSimpleName(), _c); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy