org.jenetics.GaussianMutator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of org.jenetics Show documentation
Show all versions of org.jenetics Show documentation
Jenetics - Java Genetic Algorithm Library
/*
* Java Genetic Algorithm Library (jenetics-3.1.0).
* Copyright (c) 2007-2015 Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter ([email protected])
*/
package org.jenetics;
import static java.lang.String.format;
import static org.jenetics.internal.math.random.indexes;
import java.util.Random;
import org.jenetics.internal.math.base;
import org.jenetics.internal.util.Equality;
import org.jenetics.internal.util.Hash;
import org.jenetics.util.MSeq;
import org.jenetics.util.RandomRegistry;
/**
* The GaussianMutator class performs the mutation of a {@link NumericGene}.
* This mutator picks a new value based on a Gaussian distribution around the
* current value of the gene. The variance of the new value (before clipping to
* the allowed gene range) will be
*
*
*
* The new value will be cropped to the gene's boundaries.
*
*
* @author Franz Wilhelmstötter
* @since 1.0
* @version 3.0
*/
public final class GaussianMutator<
G extends NumericGene, G>,
C extends Comparable super C>
>
extends Mutator
{
public GaussianMutator(final double probability) {
super(probability);
}
public GaussianMutator() {
this(DEFAULT_ALTER_PROBABILITY);
}
@Override
protected int mutate(final MSeq genes, final double p) {
final Random random = RandomRegistry.getRandom();
return (int)indexes(random, genes.length(), p)
.peek(i -> genes.set(i, mutate(genes.get(i), random)))
.count();
}
G mutate(final G gene, final Random random) {
final double std =
(gene.getMax().doubleValue() - gene.getMin().doubleValue())*0.25;
return gene.newInstance(base.clamp(
random.nextGaussian()*std + gene.doubleValue(),
gene.getMin().doubleValue(),
gene.getMax().doubleValue()
));
}
@Override
public int hashCode() {
return Hash.of(getClass()).and(super.hashCode()).value();
}
@Override
public boolean equals(final Object obj) {
return Equality.of(this, obj).test(super::equals);
}
@Override
public String toString() {
return format(
"%s[p=%f]",
getClass().getSimpleName(),
_probability
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy