org.jenetics.RouletteWheelSelector Maven / Gradle / Ivy
/*
* Java Genetic Algorithm Library (jenetics-3.1.0).
* Copyright (c) 2007-2015 Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter ([email protected])
*/
package org.jenetics;
import static java.lang.Math.abs;
import static org.jenetics.internal.math.arithmetic.pow;
import static org.jenetics.internal.math.base.ulpDistance;
import static org.jenetics.internal.math.statistics.min;
import java.util.Arrays;
import org.jenetics.internal.math.DoubleAdder;
import org.jenetics.internal.util.Equality;
import org.jenetics.internal.util.Hash;
/**
* The roulette-wheel selector is also known as fitness proportional selector,
* but in the Jenetics library it is implemented as probability selector.
* The fitness value fi is used to calculate the selection
* probability of individual i.
*
* @see
* Wikipedia: Roulette wheel selection
*
* @author Franz Wilhelmstötter
* @since 1.0
* @version 2.0
*/
public class RouletteWheelSelector<
G extends Gene, G>,
N extends Number & Comparable super N>
>
extends ProbabilitySelector
{
private static final long MAX_ULP_DISTANCE = pow(10, 9);
public RouletteWheelSelector() {
}
@Override
protected double[] probabilities(
final Population population,
final int count
) {
assert(population != null) : "Population can not be null. ";
assert(count > 0) : "Population to select must be greater than zero. ";
// Copy the fitness values to probabilities arrays.
final double[] fitness = new double[population.size()];
for (int i = population.size(); --i >= 0;) {
fitness[i] = population.get(i).getFitness().doubleValue();
}
final double worst = Math.min(min(fitness), 0.0);
final double sum = DoubleAdder.sum(fitness) - worst*population.size();
if (abs(ulpDistance(sum, 0.0)) > MAX_ULP_DISTANCE) {
for (int i = population.size(); --i >= 0;) {
fitness[i] = (fitness[i] - worst)/sum;
}
} else {
Arrays.fill(fitness, 1.0/population.size());
}
assert (sum2one(fitness)) : "Probabilities doesn't sum to one.";
return fitness;
}
@Override
public int hashCode() {
return Hash.of(getClass()).value();
}
@Override
public boolean equals(final Object obj) {
return Equality.ofType(this, obj);
}
@Override
public String toString() {
return getClass().getSimpleName();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy