org.jenetics.ProbabilitySelector Maven / Gradle / Ivy
/*
* Java Genetic Algorithm Library (jenetics-3.2.0).
* Copyright (c) 2007-2015 Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter ([email protected])
*/
package org.jenetics;
import static java.lang.Math.abs;
import static java.lang.String.format;
import static java.util.Objects.requireNonNull;
import static org.jenetics.internal.math.arithmetic.pow;
import static org.jenetics.internal.math.base.ulpDistance;
import static org.jenetics.internal.util.IndexSorter.sort;
import java.util.Random;
import java.util.function.Function;
import org.jenetics.internal.math.DoubleAdder;
import org.jenetics.internal.util.array;
import org.jenetics.util.RandomRegistry;
/**
* Probability selectors are a variation of fitness proportional selectors and
* selects individuals from a given population based on it's selection
* probability P(i).
*
*
*
* Fitness proportional selection works as shown in the figure above. The
* runtime complexity of the implemented probability selectors is
* O(n+log(n)) instead of O(n2) as for the naive
* approach: A binary (index) search is performed on the summed probability
* array.
*
* @author Franz Wilhelmstötter
* @since 1.0
* @version 3.2
*/
public abstract class ProbabilitySelector<
G extends Gene, G>,
C extends Comparable super C>
>
implements Selector
{
private static final int SERIAL_INDEX_THRESHOLD = 35;
private static final long MAX_ULP_DISTANCE = pow(10, 10);
private final boolean _sorted;
private final Function _reverter;
/**
* Create a new {@code ProbabilitySelector} with the given {@code sorting}
* flag. This flag must set to {@code true} if the selector
* implementation is sorting the population in the
* {@link #probabilities(Population, int)} method.
*
* @param sorted {@code true} if the implementation is sorting the
* population when calculating the selection probabilities,
* {@code false} otherwise.
*/
protected ProbabilitySelector(final boolean sorted) {
_sorted = sorted;
_reverter = sorted ? array::revert : ProbabilitySelector::sortAndRevert;
}
/**
* Create a new selector with {@code sorted = false}.
*/
protected ProbabilitySelector() {
this(false);
}
@Override
public Population select(
final Population population,
final int count,
final Optimize opt
) {
requireNonNull(population, "Population");
requireNonNull(opt, "Optimization");
if (count < 0) {
throw new IllegalArgumentException(format(
"Selection count must be greater or equal then zero, but was %s.",
count
));
}
final Population selection = new Population<>(count);
if (count > 0 && !population.isEmpty()) {
final Population pop = copy(population);
final double[] prob = probabilities(pop, count, opt);
assert pop.size() == prob.length
: "Population size and probability length are not equal.";
checkAndCorrect(prob);
assert sum2one(prob) : "Probabilities doesn't sum to one.";
incremental(prob);
final Random random = RandomRegistry.getRandom();
selection.fill(
() -> pop.get(indexOf(prob, random.nextDouble())),
count
);
}
return selection;
}
Population copy(final Population population) {
Population pop = population;
if (_sorted) {
pop = population.copy();
pop.populationSort();
}
return pop;
}
/**
* This method takes the probabilities from the
* {@link #probabilities(Population, int)} method and inverts it if needed.
*
* @param population The population.
* @param count The number of phenotypes to select.
* @param opt Determines whether the individuals with higher fitness values
* or lower fitness values must be selected. This parameter
* determines whether the GA maximizes or minimizes the fitness
* function.
* @return Probability array.
*/
protected final double[] probabilities(
final Population population,
final int count,
final Optimize opt
) {
return requireNonNull(opt) == Optimize.MINIMUM
? _reverter.apply(probabilities(population, count))
: probabilities(population, count);
}
// Package private for testing.
static double[] sortAndRevert(final double[] array) {
final int[] indexes = sort(array);
// Copy the elements in reversed order.
final double[] result = new double[array.length];
for (int i = 0; i < result.length; ++i) {
result[indexes[result.length - 1 - i]] = array[indexes[i]];
}
return result;
}
/**
*
* Return an Probability array, which corresponds to the given Population.
* The probability array and the population must have the same size. The
* population is not sorted. If a subclass needs a sorted population, the
* subclass is responsible to sort the population.
*
* The implementer always assumes that higher fitness values are better. The
* base class inverts the probabilities, by reverting the returned
* probability array, if the GA is supposed to minimize the fitness function.
*
* @param population The unsorted population.
* @param count The number of phenotypes to select. This parameter is not
* needed for most implementations.
* @return Probability array. The returned probability array must have the
* length {@code population.size()} and must sum to
* one. The returned value is checked with
* {@code assert(Math.abs(math.sum(probabilities) - 1.0) < 0.0001)}
* in the base class.
*/
protected abstract double[] probabilities(
final Population population,
final int count
);
/**
* Checks if the given probability values are finite. If not, all values are
* set to the same probability.
*
* @param probabilities the probabilities to check.
*/
private static void checkAndCorrect(final double[] probabilities) {
boolean ok = true;
for (int i = probabilities.length; --i >= 0 && ok;) {
ok = Double.isFinite(probabilities[i]);
}
if (!ok) {
final double value = 1.0/probabilities.length;
for (int i = probabilities.length; --i >= 0;) {
probabilities[i] = value;
}
}
}
/**
* Check if the given probabilities sum to one.
*
* @param probabilities the probabilities to check.
* @return {@code true} if the sum of the probabilities are within the error
* range, {@code false} otherwise.
*/
static boolean sum2one(final double[] probabilities) {
final double sum = probabilities.length > 0
? DoubleAdder.sum(probabilities)
: 1.0;
return abs(ulpDistance(sum, 1.0)) < MAX_ULP_DISTANCE;
}
static boolean eq(final double a, final double b) {
return abs(ulpDistance(a, b)) < MAX_ULP_DISTANCE;
}
static int indexOf(final double[] incr, final double v) {
return incr.length <= SERIAL_INDEX_THRESHOLD
? indexOfSerial(incr, v)
: indexOfBinary(incr, v);
}
/**
* Perform a binary-search on the summed probability array.
*/
static int indexOfBinary(final double[] incr, final double v) {
int imin = 0;
int imax = incr.length;
int index = -1;
while (imax > imin && index == -1) {
final int imid = (imin + imax) >>> 1;
if (imid == 0 || (incr[imid] >= v && incr[imid - 1] < v)) {
index = imid;
} else if (incr[imid] <= v) {
imin = imid + 1;
} else if (incr[imid] > v) {
imax = imid;
}
}
return index;
}
/**
* Perform a serial-search on the summed probability array.
*/
static int indexOfSerial(final double[] incr, final double v) {
int index = -1;
for (int i = 0; i < incr.length && index == -1; ++i) {
if (incr[i] >= v) {
index = i;
}
}
return index;
}
/**
* In-place summation of the probability array.
*/
static double[] incremental(final double[] values) {
final DoubleAdder adder = new DoubleAdder(values[0]);
for (int i = 1; i < values.length; ++i) {
values[i] = adder.add(values[i]).doubleValue();
}
return values;
}
}