All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jenetics.BitChromosome Maven / Gradle / Ivy

/*
 * Java Genetic Algorithm Library (jenetics-3.4.0).
 * Copyright (c) 2007-2016 Franz Wilhelmstötter
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Author:
 *    Franz Wilhelmstötter ([email protected])
 */
package org.jenetics;

import static java.lang.Math.min;
import static java.lang.String.format;
import static java.util.Objects.requireNonNull;
import static java.util.stream.Collectors.joining;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.math.BigInteger;
import java.util.BitSet;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.stream.IntStream;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.bind.annotation.XmlValue;
import javax.xml.bind.annotation.adapters.XmlAdapter;
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;

import org.jenetics.internal.util.Equality;
import org.jenetics.internal.util.Hash;
import org.jenetics.internal.util.bit;

import org.jenetics.util.ISeq;

/**
 * Implementation of the classical BitChromosome.
 *
 * @author Franz Wilhelmstötter
 * @since 1.0
 * @version 3.4
 */
@XmlJavaTypeAdapter(BitChromosome.Model.Adapter.class)
public class BitChromosome extends Number
	implements
		Chromosome,
		Comparable,
		Serializable
{
	private static final long serialVersionUID = 2L;


	/**
	 * The ones probability of the randomly generated Chromosome.
	 */
	protected double _p;

	/**
	 * The length of the chromosomes (number of bits).
	 */
	protected int _length;

	/**
	 * The boolean array which holds the {@link BitGene}s.
	 */
	protected byte[] _genes;

	// Wraps the genes byte array into a Seq.
	private transient BitGeneISeq _seq;

	// Private primary constructor.
	private BitChromosome(final byte[] bits, final int length, final double p) {
		_genes = bits;
		_length = length;
		_p = p;
		_seq = BitGeneMSeq.of(_genes, length).toISeq();
	}

	/**
	 * Create a new bit chromosome from the given bit (byte) array.
	 *
	 * @param bits the bit values of the new chromosome gene.
	 * @param start the initial (bit) index of the range to be copied, inclusive
	 * @param end the final (bit) index of the range to be copied, exclusive.
	 *        (This index may lie outside the array.)
	 * @throws java.lang.ArrayIndexOutOfBoundsException if {@code start < 0} or
	 *         {@code start > bits.length*8}
	 * @throws java.lang.IllegalArgumentException if {@code start > end}
	 * @throws java.lang.NullPointerException if the {@code bits} array is
	 *         {@code null}.
	 */
	public BitChromosome(final byte[] bits, final int start, final int end) {
		this(
			bit.copy(bits, start, end),
			min(bits.length << 3, end) - start,
			0.0
		);
		_p = (double)bit.count(_genes)/(double)_length;
	}

	/**
	 * Create a new {@code BitChromosome} from the given {@code byte} array.
	 * This is a shortcut for {@code new BitChromosome(bits, 0, bits.length*8)}.
	 *
	 * @param bits the {@code byte} array.
	 */
	public BitChromosome(final byte[] bits) {
		this(bits, 0, bits.length << 3);
	}

	private BitChromosome(final byte[] bits, final int length) {
		this(
			bits,
			length == -1 ? bits.length*8 : length,
			(double)bit.count(bits)/
			(double)(length == -1 ? bits.length*8 : length)
		);
	}

	private static byte[] toByteArray(final CharSequence value) {
		final byte[] bytes = bit.newArray(value.length());
		for (int i = value.length(); --i >= 0;) {
			final char c = value.charAt(i);
			if (c == '1') {
				bit.set(bytes, i);
			} else if (c != '0') {
				throw new IllegalArgumentException(format(
					"Illegal character '%s' at position %d", c, i
				));
			}
		}

		return bytes;
	}

	private void rangeCheck(final int index) {
		if (index < 0 || index >= _length) {
			throw new IndexOutOfBoundsException(
				"Index: " + index + ", Length: " + _length
			);
		}
	}

	/**
	 * Return the one probability of this chromosome.
	 *
	 * @return the one probability of this chromosome.
	 */
	double getOneProbability() {
		return _p;
	}

	@Override
	public BitGene getGene() {
		assert _genes != null;
		assert _genes.length > 0;
		return BitGene.of(bit.get(_genes, 0));
	}

	/**
	 * Return the value of the first gene of this chromosome.
	 *
	 * @since 2.0
	 * @return the first value of this chromosome.
	 */
	public boolean get() {
		return bit.get(_genes, 0);
	}

	@Override
	public BitGene getGene(final int index) {
		rangeCheck(index);
		assert _genes != null;
		return BitGene.of(bit.get(_genes, index));
	}

	/**
	 * Return the value on the specified index.
	 *
	 * @since 2.0
	 * @param index the gene index
	 * @return the wanted gene value
	 * @throws IndexOutOfBoundsException if the index is out of range
	 *          (index < 1 || index >= length()).
	 */
	public boolean get(final int index) {
		rangeCheck(index);
		return bit.get(_genes, index);
	}

	@Override
	public ISeq toSeq() {
		return _seq;
	}

	@Override
	public int length() {
		return _length;
	}

	/**
	 * Returns the number of bits set to true in this {@code BitChromosome}.
	 *
	 * @return the number of bits set to true in this {@code BitChromosome}
	 */
	public int bitCount() {
		return bit.count(_genes);
	}

	@Override
	public Iterator iterator() {
		return _seq.iterator();
	}

	public ListIterator listIterator() {
		return _seq.listIterator();
	}

	/**
	 * Return the long value this BitChromosome represents.
	 *
	 * @return long value this BitChromosome represents.
	 */
	@Override
	public int intValue() {
		return (int)longValue();
	}

	/**
	 * Return the long value this BitChromosome represents.
	 *
	 * @return long value this BitChromosome represents.
	 */
	@Override
	public long longValue() {
		return toBigInteger().longValue();
	}

	/**
	 * Return the float value this BitChromosome represents.
	 *
	 * @return float value this BitChromosome represents.
	 */
	@Override
	public float floatValue() {
		return (float)longValue();
	}

	/**
	 * Return the double value this BitChromosome represents.
	 *
	 * @return double value this BitChromosome represents.
	 */
	@Override
	public double doubleValue() {
		return longValue();
	}

	@Override
	public boolean isValid() {
		return true;
	}

	/**
	 * Return the {@code BigInteger} value this {@code BitChromosome} represents.
	 *
	 * @return {@code BigInteger} value this {@code BitChromosome} represents.
	 */
	public BigInteger toBigInteger() {
		return new BigInteger(_genes);
	}

	/**
	 * Returns the two's-complement binary representation of this
	 * large integer. The output array is in big-endian
	 * byte-order: the most significant byte is at the offset position.
	 *
	 * 

Note: This representation is consistent with {@code java.lang.BigInteger * } byte array representation and can be used for conversion * between the two classes.

* * @param bytes the bytes to hold the binary representation * (two's-complement) of this large integer. * @return the number of bytes written. * @throws IndexOutOfBoundsException * if {@code bytes.length < (int)Math.ceil(length()/8.0)} * @throws NullPointerException it the give array is {@code null}. */ public int toByteArray(final byte[] bytes) { if (bytes.length < _genes.length) { throw new IndexOutOfBoundsException(); } System.arraycopy(_genes, 0, bytes, 0, _genes.length); return _genes.length; } /** * @return a byte array which represents this {@code BitChromosome}. The * length of the array is {@code (int)Math.ceil(length()/8.0)}. * * @see #toByteArray(byte[]) */ public byte[] toByteArray() { final byte[] data = new byte[_genes.length]; toByteArray(data); return data; } /** * Return the corresponding BitSet of this BitChromosome. * * @return The corresponding BitSet of this BitChromosome. */ public BitSet toBitSet() { final BitSet set = new BitSet(length()); for (int i = 0, n = length(); i < n; ++i) { set.set(i, getGene(i).getBit()); } return set; } /** * Return the indexes of the ones of this bit-chromosome as stream. * * @since 3.0 * * @return the indexes of the ones of this bit-chromosome */ public IntStream ones() { return IntStream.range(0, length()) .filter(index -> bit.get(_genes, index)); } /** * Return the indexes of the zeros of this bit-chromosome as stream. * * @since 3.0 * * @return the indexes of the zeros of this bit-chromosome */ public IntStream zeros() { return IntStream.range(0, length()) .filter(index -> !bit.get(_genes, index)); } @Override public BitChromosome newInstance(final ISeq genes) { requireNonNull(genes, "Genes"); if (genes.isEmpty()) { throw new IllegalArgumentException( "The genes sequence must contain at least one gene." ); } final BitChromosome chromosome = new BitChromosome( bit.newArray(genes.length()), genes.length() ); int ones = 0; if (genes instanceof BitGeneISeq) { final BitGeneISeq iseq = (BitGeneISeq)genes; iseq.copyTo(chromosome._genes); ones = bit.count(chromosome._genes); } else { for (int i = genes.length(); --i >= 0;) { if (genes.get(i).booleanValue()) { bit.set(chromosome._genes, i); ++ones; } } } chromosome._p = (double)ones/(double)genes.length(); return chromosome; } @Override public BitChromosome newInstance() { return of(_length, _p); } /** * Return the BitChromosome as String. A TRUE is represented by a 1 and * a FALSE by a 0. The returned string can be used to create a new * chromosome with the {@link #of(CharSequence)} constructor. * * @return String representation (containing only '1' and '0') of the * BitChromosome. */ public String toCanonicalString() { return toSeq().stream() .map(g -> g.booleanValue() ? "1" : "0") .collect(joining()); } @Override public int compareTo(final BitChromosome that) { return toBigInteger().compareTo(that.toBigInteger()); } /** * Invert the ones and zeros of this bit chromosome. * * @return a new BitChromosome with inverted ones and zeros. */ public BitChromosome invert() { final byte[] data = _genes.clone(); bit.invert(data); return new BitChromosome(data, _length, 1.0 - _p); } /** * Construct a new BitChromosome with the given _length. * * @param length Length of the BitChromosome, number of bits. * @param p Probability of the TRUEs in the BitChromosome. * @return a new {@code BitChromosome} with the given parameter * @throws NegativeArraySizeException if the {@code length} is smaller * than one. * @throws IllegalArgumentException if {@code p} is not a valid probability. */ public static BitChromosome of(final int length, final double p) { return new BitChromosome(bit.newArray(length, p), length, p); } /** * Constructing a new BitChromosome with the given _length. The TRUEs and * FALSE in the {@code Chromosome} are equally distributed. * * @param length Length of the BitChromosome. * @return a new {@code BitChromosome} with the given parameter * @throws NegativeArraySizeException if the {@code _length} is smaller * than one. */ public static BitChromosome of(final int length) { return new BitChromosome(bit.newArray(length, 0.5), length, 0.5); } /** * @param length length of the BitChromosome. * @param bits the bit-set which initializes the chromosome * @return a new {@code BitChromosome} with the given parameter * @throws NegativeArraySizeException if the {@code length} is smaller * than one. * @throws NullPointerException if the {@code bitSet} is * {@code null}. */ public static BitChromosome of(final BitSet bits, final int length) { final byte[] bytes = bit.newArray(length); for (int i = 0; i < length; ++i) { if (bits.get(i)) { bit.set(bytes, i); } } final double p = (double)bit.count(bytes)/(double)length; return new BitChromosome(bytes, length, p); } /** * Constructing a new BitChromosome from a given BitSet. * The BitSet is copied while construction. The length of the constructed * BitChromosome will be {@code bitSet.length()} ({@link BitSet#length}). * * @param bits the bit-set which initializes the chromosome * @return a new {@code BitChromosome} with the given parameter * @throws NullPointerException if the {@code bitSet} is * {@code null}. */ public static BitChromosome of(final BitSet bits) { return new BitChromosome(bits.toByteArray(), -1); } /** * Create a new {@code BitChromosome} from the given big integer value. * * @param value the value of the created {@code BitChromosome} * @return a new {@code BitChromosome} with the given parameter * @throws NullPointerException if the given {@code value} is {@code null}. */ public static BitChromosome of(final BigInteger value) { return new BitChromosome(value.toByteArray(), -1); } /** * Create a new {@code BitChromosome} from the given character sequence * containing '0' and '1'; as created with the {@link #toCanonicalString()} * method. * * @param value the input string. * @return a new {@code BitChromosome} with the given parameter * @throws NullPointerException if the {@code value} is {@code null}. * @throws IllegalArgumentException if the length of the character sequence * is zero or contains other characters than '0' or '1'. */ public static BitChromosome of(final CharSequence value) { return new BitChromosome(toByteArray(requireNonNull(value, "Input")), -1); } @Override public int hashCode() { return Hash.of(getClass()).and(_genes).value(); } @Override public boolean equals(final Object obj) { return Equality.of(this, obj).test(c -> { boolean equals = length() == c.length(); for (int i = 0, n = length(); equals && i < n; ++i) { equals = getGene(i) == c.getGene(i); } return equals; }); } @Override public String toString() { return bit.toByteString(_genes); } /* ************************************************************************* * Java object serialization * ************************************************************************/ private void writeObject(final ObjectOutputStream out) throws IOException { out.defaultWriteObject(); out.writeInt(_length); out.writeDouble(_p); out.writeInt(_genes.length); out.write(_genes); } private void readObject(final ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); _length = in.readInt(); _p = in.readDouble(); final int bytes = in.readInt(); _genes = new byte[bytes]; in.readFully(_genes); _seq = BitGeneISeq.of(_genes, _length); } /* ************************************************************************* * JAXB object serialization * ************************************************************************/ @XmlRootElement(name = "bit-chromosome") @XmlType(name = "org.jenetics.BitChromosome") @XmlAccessorType(XmlAccessType.FIELD) final static class Model { @XmlAttribute(name = "length", required = true) public int length; @XmlAttribute(name = "ones-probability", required = true) public double probability; @XmlValue public String value; public final static class Adapter extends XmlAdapter { @Override public Model marshal(final BitChromosome chromosome) { final Model model = new Model(); model.length = chromosome._length; model.probability = chromosome._p; model.value = chromosome.toCanonicalString(); return model; } @Override public BitChromosome unmarshal(final Model model) { return new BitChromosome( toByteArray(model.value), model.length, model.probability ); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy