org.jenetics.stat.MomentStatistics Maven / Gradle / Ivy
/*
* Java Genetic Algorithm Library (jenetics-3.4.0).
* Copyright (c) 2007-2016 Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter ([email protected])
*/
package org.jenetics.stat;
import static java.lang.Double.NaN;
import static java.lang.Math.sqrt;
import static java.util.Objects.requireNonNull;
import org.jenetics.internal.math.DoubleAdder;
/**
* Base class for statistical moments calculation.
*
* @see
* Computing Higher-Order Moments Online
*
* @author Franz Wilhelmstötter
* @since 3.0
* @version 3.1
*/
abstract class MomentStatistics {
// the sample count.
private long _n = 0L;
// Variables used for statistical moments.
private final DoubleAdder _m1 = new DoubleAdder();
private final DoubleAdder _m2 = new DoubleAdder();
private final DoubleAdder _m3 = new DoubleAdder();
private final DoubleAdder _m4 = new DoubleAdder();
/**
* Update the moments with the given {@code value}.
*
* @param value the value which is used to update this statistical moments.
*/
void accept(final double value) {
++_n;
final double n = _n;
final double d = value - _m1.value();
final double dN = d/n;
final double dN2 = dN*dN;
final double t1 = d*dN*(n - 1.0);
_m1.add(dN);
_m4.add(t1*dN2*(n*n - 3.0*n + 3.0))
.add(6.0*dN2*_m2.value() - 4.0*dN*_m3.value());
_m3.add(t1*dN*(n - 2.0) - 3.0*dN*_m2.value());
_m2.add(t1);
}
/**
* Combines the state of another {@code Moments} object into this one.
*
* @see
* Computing Higher-Order Moments Online
*/
void combine(final MomentStatistics b) {
requireNonNull(b);
final double m2 = _m2.value();
final double m3 = _m3.value();
final double pn = _n;
final double n = _n + b._n;
final double nn = n*n;
final double d = b._m1.value() - _m1.value();
final double dd = d*d;
_n += b._n;
_m1.add(d*b._n/n);
_m2.add(b._m2).add(dd*pn*b._n/n);
_m3.add(b._m3)
.add(dd*d*(pn*b._n*(pn - b._n)/nn))
.add(3.0*d*(pn*b._m2.value() - b._n*m2)/n);
_m4.add(b._m4)
.add(dd*dd*(pn*b._n*(pn*pn - pn*b._n + b._n*b._n)/(nn*n)))
.add(6.0*dd*(pn*pn*b._m2.value() + b._n*b._n*m2)/nn)
.add(4.0*d*(pn*b._m3.value() - b._n*m3)/n);
}
/**
* Returns the count of values recorded.
*
* @return the count of recorded values
*/
public long getCount() {
return _n;
}
/**
* Return the arithmetic mean of values recorded, or {@code Double.NaN} if
* no values have been recorded.
*
* @return the arithmetic mean of values, or zero if none
*/
public double getMean() {
return _n == 0L ? NaN : _m1.value();
}
/**
* Return the variance of values recorded, or {@code Double.NaN} if no
* values have been recorded.
*
* @return the variance of values, or {@code NaN} if none
*/
public double getVariance() {
double var = NaN;
if (_n == 1L) {
var = _m2.value();
} else if (_n > 1L) {
var = _m2.value()/(_n - 1.0);
}
return var;
}
/**
* Return the skewness of values recorded, or {@code Double.NaN} if less
* than two values have been recorded.
*
* @see Skewness
*
* @return the skewness of values, or {@code NaN} if less than two values
* have been recorded
*/
public double getSkewness() {
double skewness = NaN;
if (_n >= 3L) {
final double var = _m2.value()/(_n - 1.0);
if (var < 10E-20) {
skewness = 0.0d;
} else {
skewness = (_n*_m3.value())/
((_n - 1.0)*(_n - 2.0)*sqrt(var)*var);
}
}
return skewness;
}
/**
* Return the kurtosis of values recorded, or {@code Double.NaN} if less
* than four values have been recorded.
*
* @see Kurtosis
*
* @return the kurtosis of values, or {@code NaN} if less than four values
* have been recorded
*/
public double getKurtosis() {
double kurtosis = NaN;
if (_n > 3L) {
final double var = _m2.value()/(_n - 1);
if (_n <= 3L || var < 10E-20) {
kurtosis = 0.0;
} else {
kurtosis = (_n*(_n + 1.0)*_m4.value() -
3.0*_m2.value()*_m2.value()*(_n - 1.0))/
((_n - 1.0)*(_n - 2.0)*(_n - 3.0)*var*var);
}
}
return kurtosis;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy