org.bitcoinj.wallet.DeterministicKeyChain Maven / Gradle / Ivy
/*
* Copyright by the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoinj.wallet;
import com.google.common.base.MoreObjects;
import com.google.protobuf.ByteString;
import org.bitcoinj.base.Network;
import org.bitcoinj.base.ScriptType;
import org.bitcoinj.base.internal.TimeUtils;
import org.bitcoinj.crypto.AesKey;
import org.bitcoinj.base.internal.ByteUtils;
import org.bitcoinj.base.internal.StreamUtils;
import org.bitcoinj.core.BloomFilter;
import org.bitcoinj.crypto.ECKey;
import org.bitcoinj.core.NetworkParameters;
import org.bitcoinj.base.internal.InternalUtils;
import org.bitcoinj.crypto.ChildNumber;
import org.bitcoinj.crypto.DeterministicHierarchy;
import org.bitcoinj.crypto.DeterministicKey;
import org.bitcoinj.crypto.EncryptedData;
import org.bitcoinj.crypto.HDKeyDerivation;
import org.bitcoinj.crypto.HDPath;
import org.bitcoinj.crypto.KeyCrypter;
import org.bitcoinj.crypto.KeyCrypterException;
import org.bitcoinj.crypto.KeyCrypterScrypt;
import org.bitcoinj.crypto.LazyECPoint;
import org.bitcoinj.crypto.MnemonicCode;
import org.bitcoinj.script.Script;
import org.bitcoinj.utils.ListenerRegistration;
import org.bitcoinj.utils.Threading;
import org.bitcoinj.wallet.listeners.KeyChainEventListener;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nullable;
import java.math.BigInteger;
import java.security.SecureRandom;
import java.time.Instant;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.concurrent.Executor;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Predicate;
import java.util.stream.Stream;
import static org.bitcoinj.base.internal.Preconditions.checkArgument;
import static org.bitcoinj.base.internal.Preconditions.checkState;
/**
* A deterministic key chain is a {@link KeyChain} that uses the
* BIP 32 standard, as implemented by
* {@link DeterministicHierarchy}, to derive all the keys in the keychain from a master seed.
* This type of wallet is extremely convenient and flexible. Although backing up full wallet files is always a good
* idea, to recover money only the root seed needs to be preserved and that is a number small enough that it can be
* written down on paper or, when represented using a BIP 39 {@link MnemonicCode},
* dictated over the phone (possibly even memorized).
*
* Deterministic key chains have other advantages: parts of the key tree can be selectively revealed to allow
* for auditing, and new public keys can be generated without access to the private keys, yielding a highly secure
* configuration for web servers which can accept payments into a wallet but not spend from them. This does not work
* quite how you would expect due to a quirk of elliptic curve mathematics and the techniques used to deal with it.
* A watching wallet is not instantiated using the public part of the master key as you may imagine. Instead, you
* need to take the account key (first child of the master key) and provide the public part of that to the watching
* wallet instead. You can do this by calling {@link #getWatchingKey()} and then serializing it with
* {@link DeterministicKey#serializePubB58(Network)}. The resulting "xpub..." string encodes
* sufficient information about the account key to create a watching chain via
* {@link DeterministicKey#deserializeB58(DeterministicKey, String, Network)}
* (with null as the first parameter) and then
* {@link Builder#watch(DeterministicKey)}.
*
* This class builds on {@link DeterministicHierarchy} and
* {@link DeterministicKey} by adding support for serialization to and from protobufs,
* and encryption of parts of the key tree. Internally it arranges itself as per the BIP 32 spec, with the seed being
* used to derive a master key, which is then used to derive an account key, the account key is used to derive two
* child keys called the internal and external parent keys (for change and handing out addresses respectively)
* and finally the actual leaf keys that users use hanging off the end. The leaf keys are special in that they don't
* internally store the private part at all, instead choosing to rederive the private key from the parent when
* needed for signing. This simplifies the design for encrypted key chains.
*
* The key chain manages a lookahead zone. This zone is required because when scanning the chain, you don't
* know exactly which keys might receive payments. The user may have handed out several addresses and received payments
* on them, but for latency reasons the block chain is requested from remote peers in bulk, meaning you must
* "look ahead" when calculating keys to put in the Bloom filter. The default lookahead zone is 100 keys, meaning if
* the user hands out more than 100 addresses and receives payment on them before the chain is next scanned, some
* transactions might be missed. 100 is a reasonable choice for consumer wallets running on CPU constrained devices.
* For industrial wallets that are receiving keys all the time, a higher value is more appropriate. Ideally DKC and the
* wallet would know how to adjust this value automatically, but that's not implemented at the moment.
*
* In fact the real size of the lookahead zone is larger than requested, by default, it's one third larger. This
* is because the act of deriving new keys means recalculating the Bloom filters and this is an expensive operation.
* Thus, to ensure we don't have to recalculate on every single new key/address requested or seen we add more buffer
* space and only extend the lookahead zone when that buffer is exhausted. For example with a lookahead zone of 100
* keys, you can request 33 keys before more keys will be calculated and the Bloom filter rebuilt and rebroadcast.
* But even when you are requesting the 33rd key, you will still be looking 100 keys ahead.
*
*
* @author Andreas Schildbach
*/
public class DeterministicKeyChain implements EncryptableKeyChain {
private static final Logger log = LoggerFactory.getLogger(DeterministicKeyChain.class);
protected final ReentrantLock lock = Threading.lock(DeterministicKeyChain.class);
public static final String DEFAULT_PASSPHRASE_FOR_MNEMONIC = "";
private DeterministicHierarchy hierarchy;
@Nullable private DeterministicKey rootKey;
@Nullable private final DeterministicSeed seed;
private final ScriptType outputScriptType;
private final HDPath accountPath;
// Paths through the key tree. External keys are ones that are communicated to other parties. Internal keys are
// keys created for change addresses, coinbases, mixing, etc - anything that isn't communicated. The distinction
// is somewhat arbitrary but can be useful for audits. The first number is the "account number" but we don't use
// that feature yet. In future we might hand out different accounts for cases where we wish to hand payers
// a payment request that can generate lots of addresses independently.
// The account path may be overridden by subclasses.
// m / 0'
public static final HDPath ACCOUNT_ZERO_PATH = HDPath.M(ChildNumber.ZERO_HARDENED);
// m / 1'
public static final HDPath ACCOUNT_ONE_PATH = HDPath.M(ChildNumber.ONE_HARDENED);
// m / 44' / 0' / 0'
public static final HDPath BIP44_ACCOUNT_ZERO_PATH = HDPath.M(new ChildNumber(44, true))
.extend(ChildNumber.ZERO_HARDENED, ChildNumber.ZERO_HARDENED);
public static final HDPath EXTERNAL_SUBPATH = HDPath.M(ChildNumber.ZERO);
public static final HDPath INTERNAL_SUBPATH = HDPath.M(ChildNumber.ONE);
// We try to ensure we have at least this many keys ready and waiting to be handed out via getKey().
// See docs for getLookaheadSize() for more info on what this is for. The -1 value means it hasn't been calculated
// yet. For new chains it's set to whatever the default is, unless overridden by setLookaheadSize. For deserialized
// chains, it will be calculated on demand from the number of loaded keys.
private static final int LAZY_CALCULATE_LOOKAHEAD = -1;
protected int lookaheadSize = 100;
// The lookahead threshold causes us to batch up creation of new keys to minimize the frequency of Bloom filter
// regenerations, which are expensive and will (in future) trigger chain download stalls/retries. One third
// is an efficiency tradeoff.
protected int lookaheadThreshold = calcDefaultLookaheadThreshold();
private int calcDefaultLookaheadThreshold() {
return lookaheadSize / 3;
}
// The parent keys for external keys (handed out to other people) and internal keys (used for change addresses).
private DeterministicKey externalParentKey, internalParentKey;
// How many keys on each path have actually been used. This may be fewer than the number that have been deserialized
// or held in memory, because of the lookahead zone.
private int issuedExternalKeys, issuedInternalKeys;
// A counter that is incremented each time a key in the lookahead threshold zone is marked as used and lookahead
// is triggered. The Wallet/KCG reads these counters and combines them so it can tell the Peer whether to throw
// away the current block (and any future blocks in the same download batch) and restart chain sync once a new
// filter has been calculated. This field isn't persisted to the wallet as it's only relevant within a network
// session.
private int keyLookaheadEpoch;
// We simplify by wrapping a basic key chain and that way we get some functionality like key lookup and event
// listeners "for free". All keys in the key tree appear here, even if they aren't meant to be used for receiving
// money.
private final BasicKeyChain basicKeyChain;
// If set this chain is following another chain in a married KeyChainGroup
private boolean isFollowing;
// holds a number of signatures required to spend. It's the N from N-of-M CHECKMULTISIG script for P2SH transactions
// and always 1 for other transaction types
protected int sigsRequiredToSpend = 1;
public static class Builder> {
protected SecureRandom random;
protected int bits = DeterministicSeed.DEFAULT_SEED_ENTROPY_BITS;
protected String passphrase;
@Nullable protected Instant creationTime = null;
protected byte[] entropy;
protected DeterministicSeed seed;
protected ScriptType outputScriptType = ScriptType.P2PKH;
protected DeterministicKey watchingKey = null;
protected boolean isFollowing = false;
protected DeterministicKey spendingKey = null;
protected HDPath accountPath = null;
protected Builder() {
}
@SuppressWarnings("unchecked")
protected T self() {
return (T)this;
}
/**
* Creates a deterministic key chain starting from the given entropy. All keys yielded by this chain will be the same
* if the starting entropy is the same. You should provide the creation time for the
* chain: this lets us know from what part of the chain we can expect to see derived keys appear.
* @param entropy entropy to create the chain with
* @param creationTime creation time for the chain
*/
public T entropy(byte[] entropy, Instant creationTime) {
this.entropy = entropy;
this.creationTime = Objects.requireNonNull(creationTime);
return self();
}
/** @deprecated use {@link #entropy(byte[], Instant)} */
@Deprecated
public T entropy(byte[] entropy, long creationTimeSecs) {
checkArgument(creationTimeSecs > 0);
return entropy(entropy, Instant.ofEpochSecond(creationTimeSecs));
}
/**
* Creates a deterministic key chain starting from the given seed. All keys yielded by this chain will be the same
* if the starting seed is the same.
*/
public T seed(DeterministicSeed seed) {
this.seed = seed;
return self();
}
/**
* Generates a new key chain with entropy selected randomly from the given {@link SecureRandom}
* object and of the requested size in bits. The derived seed is further protected with a user selected passphrase
* (see BIP 39).
* @param random the random number generator - use new SecureRandom().
* @param bits The number of bits of entropy to use when generating entropy. Either 128 (default), 192 or 256.
*/
public T random(SecureRandom random, int bits) {
this.random = random;
this.bits = bits;
return self();
}
/**
* Generates a new key chain with 128 bits of entropy selected randomly from the given {@link SecureRandom}
* object. The derived seed is further protected with a user selected passphrase
* (see BIP 39).
* @param random the random number generator - use new SecureRandom().
*/
public T random(SecureRandom random) {
this.random = random;
return self();
}
/**
* Creates a key chain that watches the given account key.
*/
public T watch(DeterministicKey accountKey) {
checkState(accountPath == null, () ->
"either watch or accountPath");
this.watchingKey = accountKey;
this.isFollowing = false;
return self();
}
/**
* Creates a deterministic key chain with the given watch key and that follows some other keychain. In a married
* wallet following keychain represents "spouse". Watch key has to be an account key.
*/
public T watchAndFollow(DeterministicKey accountKey) {
checkState(accountPath == null, () ->
"either watchAndFollow or accountPath");
this.watchingKey = accountKey;
this.isFollowing = true;
return self();
}
/**
* Creates a key chain that can spend from the given account key.
*/
public T spend(DeterministicKey accountKey) {
checkState(accountPath == null, () ->
"either spend or accountPath");
this.spendingKey = accountKey;
this.isFollowing = false;
return self();
}
public T outputScriptType(ScriptType outputScriptType) {
this.outputScriptType = outputScriptType;
return self();
}
/** The passphrase to use with the generated mnemonic, or null if you would like to use the default empty string. Currently must be the empty string. */
public T passphrase(String passphrase) {
// FIXME support non-empty passphrase
this.passphrase = passphrase;
return self();
}
/**
* Use an account path other than the default {@link DeterministicKeyChain#ACCOUNT_ZERO_PATH}.
*/
public T accountPath(List accountPath) {
checkState(watchingKey == null, () ->
"either watch or accountPath");
this.accountPath = HDPath.M(Objects.requireNonNull(accountPath));
return self();
}
public DeterministicKeyChain build() {
checkState(passphrase == null || seed == null, () ->
"passphrase must not be specified with seed");
if (accountPath == null)
accountPath = ACCOUNT_ZERO_PATH;
if (random != null)
// Default passphrase to "" if not specified
return new DeterministicKeyChain(DeterministicSeed.ofRandom(random, bits, getPassphrase()), null,
outputScriptType, accountPath);
else if (entropy != null)
return new DeterministicKeyChain(DeterministicSeed.ofEntropy(entropy, getPassphrase(), creationTime),
null, outputScriptType, accountPath);
else if (seed != null)
return new DeterministicKeyChain(seed, null, outputScriptType, accountPath);
else if (watchingKey != null)
return new DeterministicKeyChain(watchingKey, isFollowing, true, outputScriptType);
else if (spendingKey != null)
return new DeterministicKeyChain(spendingKey, false, false, outputScriptType);
else
throw new IllegalStateException();
}
protected String getPassphrase() {
return passphrase != null ? passphrase : DEFAULT_PASSPHRASE_FOR_MNEMONIC;
}
}
public static Builder> builder() {
return new Builder<>();
}
/**
*
* Creates a deterministic key chain from a watched or spendable account key. If {@code isWatching} flag is set,
* then creates a deterministic key chain that watches the given (public only) root key. You can use this to
* calculate balances and generally follow along, but spending is not possible with such a chain. If it is not set,
* then this creates a deterministic key chain that allows spending. If {@code isFollowing} flag is set(only allowed
* if {@code isWatching} is set) then this keychain follows some other keychain. In a married wallet following
* keychain represents "spouse's" keychain.
*
*
*
* This constructor is not stable across releases! If you need a stable API, use {@link #builder()} to use a
* {@link Builder}.
*
*/
public DeterministicKeyChain(DeterministicKey key, boolean isFollowing, boolean isWatching,
ScriptType outputScriptType) {
if (isWatching)
checkArgument(key.isPubKeyOnly(), () ->
"private subtrees not currently supported for watching keys: if you got this key from DKC.getWatchingKey() then use .dropPrivate().dropParent() on it first");
else
checkArgument(key.hasPrivKey(), () ->
"private subtrees are required");
checkArgument(isWatching || !isFollowing, () ->
"can only follow a key that is watched");
basicKeyChain = new BasicKeyChain();
this.seed = null;
this.rootKey = null;
basicKeyChain.importKey(key);
hierarchy = new DeterministicHierarchy(key);
this.accountPath = key.getPath();
this.outputScriptType = outputScriptType;
initializeHierarchyUnencrypted();
this.isFollowing = isFollowing;
}
/**
*
* Creates a deterministic key chain with an encrypted deterministic seed using the provided account path. Using
* {@link KeyCrypter KeyCrypter} to decrypt.
*
*
*
* This constructor is not stable across releases! If you need a stable API, use {@link #builder()} to use a
* {@link Builder}.
*
*/
protected DeterministicKeyChain(DeterministicSeed seed, @Nullable KeyCrypter crypter,
ScriptType outputScriptType, List accountPath) {
checkArgument(outputScriptType == null || outputScriptType == ScriptType.P2PKH || outputScriptType == ScriptType.P2WPKH, () ->
"only P2PKH or P2WPKH allowed");
this.outputScriptType = outputScriptType != null ? outputScriptType : ScriptType.P2PKH;
this.accountPath = HDPath.M(accountPath);
this.seed = seed;
basicKeyChain = new BasicKeyChain(crypter);
if (!seed.isEncrypted()) {
rootKey = HDKeyDerivation.createMasterPrivateKey(Objects.requireNonNull(seed.getSeedBytes()));
Optional creationTime = seed.creationTime();
if (creationTime.isPresent())
rootKey.setCreationTime(creationTime.get());
else
rootKey.clearCreationTime();
basicKeyChain.importKey(rootKey);
hierarchy = new DeterministicHierarchy(rootKey);
for (HDPath path : getAccountPath().ancestors(true)) {
basicKeyChain.importKey(hierarchy.get(path, false, true));
}
initializeHierarchyUnencrypted();
}
// Else...
// We can't initialize ourselves with just an encrypted seed, so we expected deserialization code to do the
// rest of the setup (loading the root key).
}
/**
* For use in encryption when {@link #toEncrypted(KeyCrypter, AesKey)} is called, so that
* subclasses can override that method and create an instance of the right class.
*
* See also {@link #makeKeyChainFromSeed(DeterministicSeed, List, ScriptType)}
*/
protected DeterministicKeyChain(KeyCrypter crypter, AesKey aesKey, DeterministicKeyChain chain) {
// Can't encrypt a watching chain.
Objects.requireNonNull(chain.rootKey);
Objects.requireNonNull(chain.seed);
checkArgument(!chain.rootKey.isEncrypted(), () ->
"chain already encrypted");
this.accountPath = chain.getAccountPath();
this.outputScriptType = chain.outputScriptType;
this.issuedExternalKeys = chain.issuedExternalKeys;
this.issuedInternalKeys = chain.issuedInternalKeys;
this.lookaheadSize = chain.lookaheadSize;
this.lookaheadThreshold = chain.lookaheadThreshold;
this.seed = chain.seed.encrypt(crypter, aesKey);
basicKeyChain = new BasicKeyChain(crypter);
// The first number is the "account number" but we don't use that feature.
rootKey = chain.rootKey.encrypt(crypter, aesKey, null);
hierarchy = new DeterministicHierarchy(rootKey);
basicKeyChain.importKey(rootKey);
for (HDPath path : getAccountPath().ancestors()) {
encryptNonLeaf(aesKey, chain, rootKey, path);
}
DeterministicKey account = encryptNonLeaf(aesKey, chain, rootKey, getAccountPath());
externalParentKey = encryptNonLeaf(aesKey, chain, account, getAccountPath().extend(EXTERNAL_SUBPATH));
internalParentKey = encryptNonLeaf(aesKey, chain, account, getAccountPath().extend(INTERNAL_SUBPATH));
// Now copy the (pubkey only) leaf keys across to avoid rederiving them. The private key bytes are missing
// anyway so there's nothing to encrypt.
for (DeterministicKey key : chain.getLeafKeys()) {
putKey(cloneKey(hierarchy, key));
}
for (ListenerRegistration listener : chain.basicKeyChain.getListeners()) {
basicKeyChain.addEventListener(listener);
}
}
public HDPath getAccountPath() {
return accountPath;
}
public ScriptType getOutputScriptType() {
return outputScriptType;
}
private DeterministicKey encryptNonLeaf(AesKey aesKey, DeterministicKeyChain chain,
DeterministicKey parent, List path) {
DeterministicKey key = chain.hierarchy.get(path, false, false);
key = key.encrypt(Objects.requireNonNull(basicKeyChain.getKeyCrypter()), aesKey, parent);
putKey(key);
return key;
}
// Derives the account path keys and inserts them into the basic key chain. This is important to preserve their
// order for serialization, amongst other things.
private void initializeHierarchyUnencrypted() {
externalParentKey = hierarchy.deriveChild(getAccountPath(), false, false, ChildNumber.ZERO);
internalParentKey = hierarchy.deriveChild(getAccountPath(), false, false, ChildNumber.ONE);
basicKeyChain.importKey(externalParentKey);
basicKeyChain.importKey(internalParentKey);
}
/** Returns a freshly derived key that has not been returned by this method before. */
@Override
public DeterministicKey getKey(KeyPurpose purpose) {
return getKeys(purpose, 1).get(0);
}
/** Returns freshly derived key/s that have not been returned by this method before. */
@Override
public List getKeys(KeyPurpose purpose, int numberOfKeys) {
checkArgument(numberOfKeys > 0);
lock.lock();
try {
DeterministicKey parentKey;
int index;
switch (purpose) {
// Map both REFUND and RECEIVE_KEYS to the same branch for now. Refunds are a feature of the BIP 70
// payment protocol. Later we may wish to map it to a different branch (in a new wallet version?).
// This would allow a watching wallet to only be able to see inbound payments, but not change
// (i.e. spends) or refunds. Might be useful for auditing ...
case RECEIVE_FUNDS:
case REFUND:
issuedExternalKeys += numberOfKeys;
index = issuedExternalKeys;
parentKey = externalParentKey;
break;
case AUTHENTICATION:
case CHANGE:
issuedInternalKeys += numberOfKeys;
index = issuedInternalKeys;
parentKey = internalParentKey;
break;
default:
throw new UnsupportedOperationException();
}
// Optimization: potentially do a very quick key generation for just the number of keys we need if we
// didn't already create them, ignoring the configured lookahead size. This ensures we'll be able to
// retrieve the keys in the following loop, but if we're totally fresh and didn't get a chance to
// calculate the lookahead keys yet, this will not block waiting to calculate 100+ EC point multiplies.
// On slow/crappy Android phones looking ahead 100 keys can take ~5 seconds but the OS will kill us
// if we block for just one second on the UI thread. Because UI threads may need an address in order
// to render the screen, we need getKeys to be fast even if the wallet is totally brand new and lookahead
// didn't happen yet.
//
// It's safe to do this because when a network thread tries to calculate a Bloom filter, we'll go ahead
// and calculate the full lookahead zone there, so network requests will always use the right amount.
List lookahead = maybeLookAhead(parentKey, index, 0, 0);
putKeys(lookahead);
List keys = new ArrayList<>(numberOfKeys);
for (int i = 0; i < numberOfKeys; i++) {
HDPath path = parentKey.getPath().extend(new ChildNumber(index - numberOfKeys + i, false));
DeterministicKey k = hierarchy.get(path, false, false);
// Just a last minute sanity check before we hand the key out to the app for usage. This isn't inspired
// by any real problem reports from bitcoinj users, but I've heard of cases via the grapevine of
// places that lost money due to bitflips causing addresses to not match keys. Of course in an
// environment with flaky RAM there's no real way to always win: bitflips could be introduced at any
// other layer. But as we're potentially retrieving from long term storage here, check anyway.
checkForBitFlip(k);
keys.add(k);
}
return keys;
} finally {
lock.unlock();
}
}
private void putKey(DeterministicKey key) {
hierarchy.putKey(key);
basicKeyChain.importKey(key);
}
private void putKeys(List keys) {
hierarchy.putKeys(keys);
basicKeyChain.importKeys(keys);
}
// Clone key to new hierarchy.
private static DeterministicKey cloneKey(DeterministicHierarchy hierarchy, DeterministicKey key) {
DeterministicKey parent = hierarchy.get(Objects.requireNonNull(key.getParent()).getPath(), false, false);
return new DeterministicKey(key.dropPrivateBytes(), parent);
}
private void checkForBitFlip(DeterministicKey k) {
DeterministicKey parent = Objects.requireNonNull(k.getParent());
byte[] rederived = HDKeyDerivation.deriveChildKeyBytesFromPublic(parent, k.getChildNumber(), HDKeyDerivation.PublicDeriveMode.WITH_INVERSION).keyBytes;
byte[] actual = k.getPubKey();
if (!Arrays.equals(rederived, actual))
throw new IllegalStateException(String.format(Locale.US, "Bit-flip check failed: %s vs %s", Arrays.toString(rederived), Arrays.toString(actual)));
}
/**
* Mark the DeterministicKey as used.
* Also correct the issued{Internal|External}Keys counter, because all lower children seem to be requested already.
* If the counter was updated, we also might trigger lookahead.
*/
public DeterministicKey markKeyAsUsed(DeterministicKey k) {
int numChildren = k.getChildNumber().i() + 1;
if (k.getParent() == internalParentKey) {
if (issuedInternalKeys < numChildren) {
issuedInternalKeys = numChildren;
maybeLookAhead();
}
} else if (k.getParent() == externalParentKey) {
if (issuedExternalKeys < numChildren) {
issuedExternalKeys = numChildren;
maybeLookAhead();
}
}
return k;
}
public DeterministicKey findKeyFromPubHash(byte[] pubkeyHash) {
lock.lock();
try {
return (DeterministicKey) basicKeyChain.findKeyFromPubHash(pubkeyHash);
} finally {
lock.unlock();
}
}
public DeterministicKey findKeyFromPubKey(byte[] pubkey) {
lock.lock();
try {
return (DeterministicKey) basicKeyChain.findKeyFromPubKey(pubkey);
} finally {
lock.unlock();
}
}
/**
* Mark the DeterministicKeys as used, if they match the pubkeyHash
* See {@link DeterministicKeyChain#markKeyAsUsed(DeterministicKey)} for more info on this.
*/
@Nullable
public DeterministicKey markPubHashAsUsed(byte[] pubkeyHash) {
lock.lock();
try {
DeterministicKey k = (DeterministicKey) basicKeyChain.findKeyFromPubHash(pubkeyHash);
if (k != null)
markKeyAsUsed(k);
return k;
} finally {
lock.unlock();
}
}
/**
* Mark the DeterministicKeys as used, if they match the pubkey
* See {@link DeterministicKeyChain#markKeyAsUsed(DeterministicKey)} for more info on this.
*/
@Nullable
public DeterministicKey markPubKeyAsUsed(byte[] pubkey) {
lock.lock();
try {
DeterministicKey k = (DeterministicKey) basicKeyChain.findKeyFromPubKey(pubkey);
if (k != null)
markKeyAsUsed(k);
return k;
} finally {
lock.unlock();
}
}
@Override
public boolean hasKey(ECKey key) {
lock.lock();
try {
return basicKeyChain.hasKey(key);
} finally {
lock.unlock();
}
}
/** Returns the deterministic key for the given absolute path in the hierarchy. */
protected DeterministicKey getKeyByPath(ChildNumber... path) {
return getKeyByPath(HDPath.M(Arrays.asList(path)));
}
/** Returns the deterministic key for the given absolute path in the hierarchy. */
protected DeterministicKey getKeyByPath(List path) {
return getKeyByPath(path, false);
}
/** Returns the deterministic key for the given absolute path in the hierarchy, optionally creating it */
public DeterministicKey getKeyByPath(List path, boolean create) {
return hierarchy.get(path, false, create);
}
@Nullable
public DeterministicKey getRootKey() {
return rootKey;
}
/**
* An alias for {@code getKeyByPath(getAccountPath())}.
*
* Use this when you would like to create a watching key chain that follows this one, but can't spend money from it.
* The returned key can be serialized and then passed into {@link Builder#watch(DeterministicKey)}
* on another system to watch the hierarchy.
*
* Note that the returned key is not pubkey only unless this key chain already is: the returned key can still
* be used for signing etc if the private key bytes are available.
*/
public DeterministicKey getWatchingKey() {
return getKeyByPath(getAccountPath());
}
/** Returns true if this chain is watch only, meaning it has public keys but no private key. */
public boolean isWatching() {
return getWatchingKey().isWatching();
}
@Override
public int numKeys() {
// We need to return here the total number of keys including the lookahead zone, not the number of keys we
// have issued via getKey/freshReceiveKey.
lock.lock();
try {
maybeLookAhead();
return basicKeyChain.numKeys();
} finally {
lock.unlock();
}
}
/**
* Returns number of leaf keys used including both internal and external paths. This may be fewer than the number
* that have been deserialized or held in memory, because of the lookahead zone.
*/
public int numLeafKeysIssued() {
lock.lock();
try {
return issuedExternalKeys + issuedInternalKeys;
} finally {
lock.unlock();
}
}
@Override
public Instant earliestKeyCreationTime() {
return (seed != null ?
seed.creationTime() :
getWatchingKey().creationTime()
).orElse(Instant.EPOCH);
}
@Override
public void addEventListener(KeyChainEventListener listener) {
basicKeyChain.addEventListener(listener);
}
@Override
public void addEventListener(KeyChainEventListener listener, Executor executor) {
basicKeyChain.addEventListener(listener, executor);
}
@Override
public boolean removeEventListener(KeyChainEventListener listener) {
return basicKeyChain.removeEventListener(listener);
}
/** Returns a list of words that represent the seed or null if this chain is a watching chain. */
@Nullable
public List getMnemonicCode() {
if (seed == null) return null;
lock.lock();
try {
return seed.getMnemonicCode();
} finally {
lock.unlock();
}
}
/**
* Return true if this keychain is following another keychain
*/
public boolean isFollowing() {
return isFollowing;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Serialization support
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Serialize to a list of keys
* @return A list of keys (treat as unmodifiable list, will change in future release)
*/
@Override
public List serializeToProtobuf() {
lock.lock();
try {
// TODO: return unmodifiable list
return serializeMyselfToProtobuf();
} finally {
lock.unlock();
}
}
/**
* Serialize to a list of keys. Does not use {@code lock}, expects caller to provide locking.
* @return A list of keys (treat as unmodifiable list, will change in future release)
*/
protected List serializeMyselfToProtobuf() {
// Most of the serialization work is delegated to the basic key chain, which will serialize the bulk of the
// data (handling encryption along the way), and letting us patch it up with the extra data we care about.
LinkedList entries = new LinkedList<>();
if (seed != null) {
Protos.Key.Builder mnemonicEntry = BasicKeyChain.serializeEncryptableItem(seed);
mnemonicEntry.setType(Protos.Key.Type.DETERMINISTIC_MNEMONIC);
serializeSeedEncryptableItem(seed, mnemonicEntry);
for (ChildNumber childNumber : getAccountPath()) {
mnemonicEntry.addAccountPath(childNumber.i());
}
entries.add(mnemonicEntry.build());
}
Map keys = basicKeyChain.serializeToEditableProtobufs();
for (Map.Entry entry : keys.entrySet()) {
DeterministicKey key = (DeterministicKey) entry.getKey();
Protos.Key.Builder proto = entry.getValue();
proto.setType(Protos.Key.Type.DETERMINISTIC_KEY);
final Protos.DeterministicKey.Builder detKey = proto.getDeterministicKey().toBuilder();
detKey.setChainCode(ByteString.copyFrom(key.getChainCode()));
for (ChildNumber num : key.getPath())
detKey.addPath(num.i());
if (key.equals(externalParentKey)) {
detKey.setIssuedSubkeys(issuedExternalKeys);
detKey.setLookaheadSize(lookaheadSize);
detKey.setSigsRequiredToSpend(getSigsRequiredToSpend());
} else if (key.equals(internalParentKey)) {
detKey.setIssuedSubkeys(issuedInternalKeys);
detKey.setLookaheadSize(lookaheadSize);
detKey.setSigsRequiredToSpend(getSigsRequiredToSpend());
}
// Flag the very first key of following keychain.
if (entries.isEmpty() && isFollowing()) {
detKey.setIsFollowing(true);
}
proto.setDeterministicKey(detKey);
if (key.getParent() != null) {
// HD keys inherit the timestamp of their parent if they have one, so no need to serialize it.
proto.clearCreationTimestamp();
} else {
proto.setOutputScriptType(Protos.Key.OutputScriptType.valueOf(outputScriptType.name()));
}
entries.add(proto.build());
}
// TODO: return unmodifiable list
return entries;
}
static List fromProtobuf(List keys, @Nullable KeyCrypter crypter) throws UnreadableWalletException {
return fromProtobuf(keys, crypter, new DefaultKeyChainFactory());
}
/**
* Returns all the key chains found in the given list of keys. Typically there will only be one, but in the case of
* key rotation it can happen that there are multiple chains found.
*/
public static List fromProtobuf(List keys, @Nullable KeyCrypter crypter, KeyChainFactory factory) throws UnreadableWalletException {
List chains = new LinkedList<>();
DeterministicSeed seed = null;
DeterministicKeyChain chain = null;
int lookaheadSize = -1;
int sigsRequiredToSpend = 1;
HDPath accountPath = HDPath.M();
ScriptType outputScriptType = ScriptType.P2PKH;
for (Protos.Key key : keys) {
final Protos.Key.Type t = key.getType();
if (t == Protos.Key.Type.DETERMINISTIC_MNEMONIC) {
accountPath = deserializeAccountPath(key.getAccountPathList());
if (chain != null) {
addChain(chains, chain, lookaheadSize, sigsRequiredToSpend);
chain = null;
}
Instant seedCreationTime = Instant.ofEpochMilli(key.getCreationTimestamp());
String passphrase = DEFAULT_PASSPHRASE_FOR_MNEMONIC; // FIXME allow non-empty passphrase
if (key.hasSecretBytes()) {
if (key.hasEncryptedDeterministicSeed())
throw new UnreadableWalletException("Malformed key proto: " + key);
byte[] seedBytes = null;
if (key.hasDeterministicSeed()) {
seedBytes = key.getDeterministicSeed().toByteArray();
}
seed = new DeterministicSeed(key.getSecretBytes().toStringUtf8(), seedBytes, passphrase, seedCreationTime);
} else if (key.hasEncryptedData()) {
if (key.hasDeterministicSeed())
throw new UnreadableWalletException("Malformed key proto: " + key);
EncryptedData data = new EncryptedData(key.getEncryptedData().getInitialisationVector().toByteArray(),
key.getEncryptedData().getEncryptedPrivateKey().toByteArray());
EncryptedData encryptedSeedBytes = null;
if (key.hasEncryptedDeterministicSeed()) {
Protos.EncryptedData encryptedSeed = key.getEncryptedDeterministicSeed();
encryptedSeedBytes = new EncryptedData(encryptedSeed.getInitialisationVector().toByteArray(),
encryptedSeed.getEncryptedPrivateKey().toByteArray());
}
seed = new DeterministicSeed(data, encryptedSeedBytes, seedCreationTime);
} else {
throw new UnreadableWalletException("Malformed key proto: " + key);
}
if (log.isDebugEnabled())
log.debug("Deserializing: DETERMINISTIC_MNEMONIC: {}", seed);
} else if (t == Protos.Key.Type.DETERMINISTIC_KEY) {
if (!key.hasDeterministicKey())
throw new UnreadableWalletException("Deterministic key missing extra data: " + key);
byte[] chainCode = key.getDeterministicKey().getChainCode().toByteArray();
// Deserialize the public key and path.
LazyECPoint pubkey = new LazyECPoint(ECKey.CURVE.getCurve(), key.getPublicKey().toByteArray());
// Deserialize the path through the tree.
final HDPath path = HDPath.deserialize(key.getDeterministicKey().getPathList());
if (key.hasOutputScriptType())
outputScriptType = ScriptType.valueOf(key.getOutputScriptType().name());
// Possibly create the chain, if we didn't already do so yet.
boolean isWatchingAccountKey = false;
boolean isFollowingKey = false;
boolean isSpendingKey = false;
// save previous chain if any if the key is marked as following. Current key and the next ones are to be
// placed in new following key chain
if (key.getDeterministicKey().getIsFollowing()) {
if (chain != null) {
addChain(chains, chain, lookaheadSize, sigsRequiredToSpend);
chain = null;
seed = null;
}
isFollowingKey = true;
}
if (chain == null) {
// If this is not a following chain and previous was, this must be married
boolean isMarried = !isFollowingKey && !chains.isEmpty() && chains.get(chains.size() - 1).isFollowing();
// If this has a private key but no seed, then all we know is the spending key H
if (seed == null && key.hasSecretBytes()) {
DeterministicKey accountKey = new DeterministicKey(path, chainCode, pubkey, ByteUtils.bytesToBigInteger(key.getSecretBytes().toByteArray()), null);
accountKey.setCreationTime(Instant.ofEpochMilli(key.getCreationTimestamp()));
chain = factory.makeSpendingKeyChain(accountKey, isMarried, outputScriptType);
isSpendingKey = true;
} else if (seed == null) {
DeterministicKey accountKey = new DeterministicKey(path, chainCode, pubkey, null, null);
accountKey.setCreationTime(Instant.ofEpochMilli(key.getCreationTimestamp()));
chain = factory.makeWatchingKeyChain(accountKey, isFollowingKey, isMarried,
outputScriptType);
isWatchingAccountKey = true;
} else {
chain = factory.makeKeyChain(seed, crypter, isMarried,
outputScriptType, accountPath);
chain.lookaheadSize = LAZY_CALCULATE_LOOKAHEAD;
// If the seed is encrypted, then the chain is incomplete at this point. However, we will load
// it up below as we parse in the keys. We just need to check at the end that we've loaded
// everything afterwards.
}
}
// Find the parent key assuming this is not the root key, and not an account key for a watching chain.
DeterministicKey parent = null;
if (!path.isEmpty() && !isWatchingAccountKey && !isSpendingKey) {
parent = chain.hierarchy.get(path.parent(), false, false);
}
DeterministicKey detkey;
if (key.hasSecretBytes()) {
// Not encrypted: private key is available.
final BigInteger priv = ByteUtils.bytesToBigInteger(key.getSecretBytes().toByteArray());
detkey = new DeterministicKey(path, chainCode, pubkey, priv, parent);
} else {
if (key.hasEncryptedData()) {
Protos.EncryptedData proto = key.getEncryptedData();
EncryptedData data = new EncryptedData(proto.getInitialisationVector().toByteArray(),
proto.getEncryptedPrivateKey().toByteArray());
Objects.requireNonNull(crypter, "Encountered an encrypted key but no key crypter provided");
detkey = new DeterministicKey(path, chainCode, crypter, pubkey, data, parent);
} else {
// No secret key bytes and key is not encrypted: either a watching key or private key bytes
// will be rederived on the fly from the parent.
detkey = new DeterministicKey(path, chainCode, pubkey, null, parent);
}
}
if (key.hasCreationTimestamp())
detkey.setCreationTime(Instant.ofEpochMilli(key.getCreationTimestamp()));
if (log.isDebugEnabled())
log.debug("Deserializing: DETERMINISTIC_KEY: {}", detkey);
if (!isWatchingAccountKey) {
// If the non-encrypted case, the non-leaf keys (account, internal, external) have already
// been rederived and inserted at this point. In the encrypted case though,
// we can't rederive and we must reinsert, potentially building the hierarchy object
// if need be.
if (path.isEmpty()) {
// Master key.
if (chain.rootKey == null) {
chain.rootKey = detkey;
chain.hierarchy = new DeterministicHierarchy(detkey);
}
} else if ((path.size() == chain.getAccountPath().size() + 1) || isSpendingKey) {
// Constant 0 is used for external chain and constant 1 for internal chain
// (also known as change addresses). https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
if (detkey.getChildNumber().num() == 0) {
// External chain is used for addresses that are meant to be visible outside of the wallet
// (e.g. for receiving payments).
chain.externalParentKey = detkey;
chain.issuedExternalKeys = key.getDeterministicKey().getIssuedSubkeys();
lookaheadSize = Math.max(lookaheadSize, key.getDeterministicKey().getLookaheadSize());
sigsRequiredToSpend = key.getDeterministicKey().getSigsRequiredToSpend();
} else if (detkey.getChildNumber().num() == 1) {
// Internal chain is used for addresses which are not meant to be visible outside of the
// wallet and is used for return transaction change.
chain.internalParentKey = detkey;
chain.issuedInternalKeys = key.getDeterministicKey().getIssuedSubkeys();
}
}
}
chain.putKey(detkey);
}
}
if (chain != null) {
addChain(chains, chain, lookaheadSize, sigsRequiredToSpend);
}
return chains;
}
private static void addChain(List chains, DeterministicKeyChain chain, int lookaheadSize, int sigsRequiredToSpend) {
checkState(lookaheadSize >= 0);
chain.setLookaheadSize(lookaheadSize);
chain.setSigsRequiredToSpend(sigsRequiredToSpend);
chain.maybeLookAhead();
chains.add(chain);
}
private static HDPath deserializeAccountPath(List integerList) {
HDPath path = HDPath.deserialize(integerList);
return path.isEmpty() ? ACCOUNT_ZERO_PATH : path;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Encryption support
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@Override
public DeterministicKeyChain toEncrypted(CharSequence password) {
Objects.requireNonNull(password);
checkArgument(password.length() > 0);
checkState(seed != null, () ->
"attempt to encrypt a watching chain");
checkState(!seed.isEncrypted());
KeyCrypter scrypt = new KeyCrypterScrypt();
AesKey derivedKey = scrypt.deriveKey(password);
return toEncrypted(scrypt, derivedKey);
}
@Override
public DeterministicKeyChain toEncrypted(KeyCrypter keyCrypter, AesKey aesKey) {
return new DeterministicKeyChain(keyCrypter, aesKey, this);
}
@Override
public DeterministicKeyChain toDecrypted(CharSequence password) {
Objects.requireNonNull(password);
checkArgument(password.length() > 0);
KeyCrypter crypter = getKeyCrypter();
checkState(crypter != null, () ->
"chain not encrypted");
AesKey derivedKey = crypter.deriveKey(password);
return toDecrypted(derivedKey);
}
@Override
public DeterministicKeyChain toDecrypted(AesKey aesKey) {
checkState(getKeyCrypter() != null, () ->
"key chain not encrypted");
checkState(seed != null, () ->
"can't decrypt a watching chain");
checkState(seed.isEncrypted());
String passphrase = DEFAULT_PASSPHRASE_FOR_MNEMONIC; // FIXME allow non-empty passphrase
DeterministicSeed decSeed = seed.decrypt(getKeyCrypter(), passphrase, aesKey);
DeterministicKeyChain chain = makeKeyChainFromSeed(decSeed, getAccountPath(), outputScriptType);
// Now double check that the keys match to catch the case where the key is wrong but padding didn't catch it.
if (!chain.getWatchingKey().getPubKeyPoint().equals(getWatchingKey().getPubKeyPoint()))
throw new KeyCrypterException.PublicPrivateMismatch("Provided AES key is wrong");
chain.lookaheadSize = lookaheadSize;
// Now copy the (pubkey only) leaf keys across to avoid rederiving them. The private key bytes are missing
// anyway so there's nothing to decrypt.
for (DeterministicKey key : getLeafKeys()) {
checkState(key.isEncrypted());
chain.putKey(cloneKey(chain.hierarchy, key));
}
chain.issuedExternalKeys = issuedExternalKeys;
chain.issuedInternalKeys = issuedInternalKeys;
for (ListenerRegistration listener : basicKeyChain.getListeners()) {
chain.basicKeyChain.addEventListener(listener);
}
return chain;
}
/**
* Factory method to create a key chain from a seed.
* Subclasses should override this to create an instance of the subclass instead of a plain DKC.
* This is used in encryption/decryption.
*/
protected DeterministicKeyChain makeKeyChainFromSeed(DeterministicSeed seed, List accountPath,
ScriptType outputScriptType) {
return new DeterministicKeyChain(seed, null, outputScriptType, accountPath);
}
@Override
public boolean checkPassword(CharSequence password) {
Objects.requireNonNull(password);
checkState(getKeyCrypter() != null, () ->
"key chain not encrypted");
return checkAESKey(getKeyCrypter().deriveKey(password));
}
@Override
public boolean checkAESKey(AesKey aesKey) {
checkState(rootKey != null, () ->
"can't check password for a watching chain");
Objects.requireNonNull(aesKey);
checkState(getKeyCrypter() != null, () ->
"key chain not encrypted");
try {
return rootKey.decrypt(aesKey).getPubKeyPoint().equals(rootKey.getPubKeyPoint());
} catch (KeyCrypterException e) {
return false;
}
}
@Nullable
@Override
public KeyCrypter getKeyCrypter() {
return basicKeyChain.getKeyCrypter();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Bloom filtering support
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@Override
public int numBloomFilterEntries() {
return numKeys() * 2;
}
@Override
public BloomFilter getFilter(int size, double falsePositiveRate, int tweak) {
lock.lock();
try {
checkArgument(size >= numBloomFilterEntries());
maybeLookAhead();
return basicKeyChain.getFilter(size, falsePositiveRate, tweak);
} finally {
lock.unlock();
}
}
/**
* The number of public keys we should pre-generate on each path before they are requested by the app. This is
* required so that when scanning through the chain given only a seed, we can give enough keys to the remote node
* via the Bloom filter such that we see transactions that are "from the future", for example transactions created
* by a different app that's sharing the same seed, or transactions we made before but we're replaying the chain
* given just the seed. The default is 100.
*/
public int getLookaheadSize() {
lock.lock();
try {
return lookaheadSize;
} finally {
lock.unlock();
}
}
/**
* Sets a new lookahead size. See {@link #getLookaheadSize()} for details on what this is. Setting a new size
* that's larger than the current size will return immediately and the new size will only take effect next time
* a fresh filter is requested (e.g. due to a new peer being connected). So you should set this before starting
* to sync the chain, if you want to modify it. If you haven't modified the lookahead threshold manually then
* it will be automatically set to be a third of the new size.
*/
public void setLookaheadSize(int lookaheadSize) {
lock.lock();
try {
boolean readjustThreshold = this.lookaheadThreshold == calcDefaultLookaheadThreshold();
this.lookaheadSize = lookaheadSize;
if (readjustThreshold)
this.lookaheadThreshold = calcDefaultLookaheadThreshold();
} finally {
lock.unlock();
}
}
/**
* Sets the threshold for the key pre-generation. This is used to avoid adding new keys and thus
* re-calculating Bloom filters every time a new key is calculated. Without a lookahead threshold, every time we
* received a relevant transaction we'd extend the lookahead zone and generate a new filter, which is inefficient.
*/
public void setLookaheadThreshold(int num) {
lock.lock();
try {
if (num >= lookaheadSize)
throw new IllegalArgumentException("Threshold larger or equal to the lookaheadSize");
this.lookaheadThreshold = num;
} finally {
lock.unlock();
}
}
/**
* Gets the threshold for the key pre-generation. See {@link #setLookaheadThreshold(int)} for details on what this
* is. The default is a third of the lookahead size (100 / 3 == 33). If you don't modify it explicitly then this
* value will always be one third of the lookahead size.
*/
public int getLookaheadThreshold() {
lock.lock();
try {
if (lookaheadThreshold >= lookaheadSize)
return 0;
return lookaheadThreshold;
} finally {
lock.unlock();
}
}
/**
* Pre-generate enough keys to reach the lookahead size. You can call this if you need to explicitly invoke
* the lookahead procedure, but it's normally unnecessary as it will be done automatically when needed.
*/
public void maybeLookAhead() {
lock.lock();
try {
List keys = concatLists(
maybeLookAhead(externalParentKey, issuedExternalKeys),
maybeLookAhead(internalParentKey, issuedInternalKeys));
if (!keys.isEmpty()) {
keyLookaheadEpoch++;
// Batch add all keys at once so there's only one event listener invocation, as this will be listened to
// by the wallet and used to rebuild/broadcast the Bloom filter. That's expensive so we don't want to do
// it more often than necessary.
putKeys(keys);
}
} finally {
lock.unlock();
}
}
private List concatLists(List list1, List list2) {
return Stream.concat(list1.stream(), list2.stream())
.collect(StreamUtils.toUnmodifiableList());
}
private List maybeLookAhead(DeterministicKey parent, int issued) {
checkState(lock.isHeldByCurrentThread());
return maybeLookAhead(parent, issued, getLookaheadSize(), getLookaheadThreshold());
}
/**
* Pre-generate enough keys to reach the lookahead size, but only if there are more than the lookaheadThreshold to
* be generated, so that the Bloom filter does not have to be regenerated that often.
*
* Although this method reads fields, it has no side effects and simply returns a list of keys. This
* means the caller is responsible for adding them to the hierarchy and keychain.
* @param parent parent key
* @param issued number of keys already issued
* @param lookaheadSize target lookahead
* @param lookaheadThreshold lookahead threshold
* @return unmodifiable list of keys (typically the caller must insert them into the hierarchy and basic keychain)
*/
private List maybeLookAhead(DeterministicKey parent, int issued, int lookaheadSize, int lookaheadThreshold) {
checkState(lock.isHeldByCurrentThread());
final int numChildren = hierarchy.getNumChildren(parent.getPath());
final int needed = issued + lookaheadSize + lookaheadThreshold - numChildren;
final int limit = (needed > lookaheadThreshold) ? needed : 0;
log.info("{} keys needed for {} = {} issued + {} lookahead size + {} lookahead threshold - {} num children",
limit, parent.getPathAsString(), issued, lookaheadSize, lookaheadThreshold, numChildren);
Instant start = TimeUtils.currentTime();
List result = HDKeyDerivation.generate(parent, numChildren)
.limit(limit)
.map(DeterministicKey::dropPrivateBytes)
.collect(StreamUtils.toUnmodifiableList());
log.info("Took {} ms", TimeUtils.elapsedTime(start).toMillis());
return result;
}
/** Housekeeping call to call when lookahead might be needed. Normally called automatically by KeychainGroup. */
public void maybeLookAheadScripts() {
}
/**
* Returns number of keys used on external path. This may be fewer than the number that have been deserialized
* or held in memory, because of the lookahead zone.
*/
public int getIssuedExternalKeys() {
lock.lock();
try {
return issuedExternalKeys;
} finally {
lock.unlock();
}
}
/**
* Returns number of keys used on internal path. This may be fewer than the number that have been deserialized
* or held in memory, because of the lookahead zone.
*/
public int getIssuedInternalKeys() {
lock.lock();
try {
return issuedInternalKeys;
} finally {
lock.unlock();
}
}
/** Returns the seed or null if this chain is a watching chain. */
@Nullable
public DeterministicSeed getSeed() {
lock.lock();
try {
return seed;
} finally {
lock.unlock();
}
}
/**
* Return a subset list of keys
* For internal usage only
* @param includeLookahead if true include all keys, if false don't include lookahead keys
* @param includeParents if true, include parent keys. If false, leaf keys only
* @return Unmodifiable list of keys
*/
/* package */ List getKeys(boolean includeLookahead, boolean includeParents) {
return getKeys(filterKeys(includeLookahead, includeParents));
}
/**
* Return a filter predicate for a stream (list) of keys
* @param includeLookahead if true include all keys, if false don't include lookahead keys
* @param includeParents if true, include parent keys. If false, leaf keys only
* @return A filter predicate that filters according to the parameters
*/
private Predicate filterKeys(boolean includeLookahead, boolean includeParents) {
Predicate keyFilter;
if (!includeLookahead) {
int treeSize = internalParentKey.getPath().size();
keyFilter = key -> {
DeterministicKey parent = key.getParent();
return !(
(!includeParents && parent == null) ||
(!includeParents && key.getPath().size() <= treeSize) ||
(internalParentKey.equals(parent) && key.getChildNumber().i() >= issuedInternalKeys) ||
(externalParentKey.equals(parent) && key.getChildNumber().i() >= issuedExternalKeys)
);
};
} else {
// TODO includeParents is ignored here
keyFilter = key -> true;
}
return keyFilter;
}
/**
* Return a filtered subset of keys
* @param keyFilter filtering predicate
* @return Unmodifiable list of keys
*/
private List getKeys(Predicate keyFilter) {
return basicKeyChain.getKeys().stream()
.map(key -> (DeterministicKey) key)
.filter(keyFilter)
.collect(StreamUtils.toUnmodifiableList());
}
/**
* Returns only the external keys that have been issued by this chain, lookahead not included.
* @return Unmodifiable list of keys
*/
public List getIssuedReceiveKeys() {
return getKeys(
filterKeys(false, false)
.and(key -> externalParentKey.equals(key.getParent())) // keys with parent == externalParentKey
);
}
/**
* Returns leaf keys issued by this chain (including lookahead zone)
* @return Unmodifiable list of keys
*/
public List getLeafKeys() {
return getKeys(key -> key.getPath().size() == getAccountPath().size() + 2); // leaf keys only
}
/*package*/ static void serializeSeedEncryptableItem(DeterministicSeed seed, Protos.Key.Builder proto) {
// The seed can be missing if we have not derived it yet from the mnemonic.
// This will not normally happen once all the wallets are on the latest code that caches
// the seed.
if (seed.isEncrypted() && seed.getEncryptedSeedData() != null) {
EncryptedData data = seed.getEncryptedSeedData();
proto.setEncryptedDeterministicSeed(proto.getEncryptedDeterministicSeed().toBuilder()
.setEncryptedPrivateKey(ByteString.copyFrom(data.encryptedBytes))
.setInitialisationVector(ByteString.copyFrom(data.initialisationVector)));
// We don't allow mixing of encryption types at the moment.
checkState(seed.getEncryptionType() == Protos.Wallet.EncryptionType.ENCRYPTED_SCRYPT_AES);
} else {
final byte[] secret = seed.getSeedBytes();
if (secret != null)
proto.setDeterministicSeed(ByteString.copyFrom(secret));
}
}
/**
* Returns a counter that is incremented each time new keys are generated due to lookahead. Used by the network
* code to learn whether to discard the current block and await calculation of a new filter.
*/
public int getKeyLookaheadEpoch() {
lock.lock();
try {
return keyLookaheadEpoch;
} finally {
lock.unlock();
}
}
/**
* Whether the keychain is married. A keychain is married when it vends P2SH addresses
* from multiple keychains in a multisig relationship.
* @see org.bitcoinj.wallet.MarriedKeyChain
*/
public boolean isMarried() {
return false;
}
/** Get redeem data for a key. Only applicable to married keychains. */
public RedeemData getRedeemData(DeterministicKey followedKey) {
throw new UnsupportedOperationException();
}
/** Create a new key and return the matching output script. Only applicable to married keychains. */
public Script freshOutputScript(KeyPurpose purpose) {
throw new UnsupportedOperationException();
}
@Override
public String toString() {
MoreObjects.ToStringHelper helper = MoreObjects.toStringHelper(this).omitNullValues();
helper.addValue(outputScriptType);
helper.add("accountPath", accountPath);
helper.add("lookaheadSize", lookaheadSize);
helper.add("lookaheadThreshold", lookaheadThreshold);
if (isFollowing)
helper.addValue("following");
return helper.toString();
}
public String toString(boolean includeLookahead, boolean includePrivateKeys, @Nullable AesKey aesKey, NetworkParameters params) {
final DeterministicKey watchingKey = getWatchingKey();
final StringBuilder builder = new StringBuilder();
if (seed != null) {
if (includePrivateKeys) {
DeterministicSeed decryptedSeed = seed.isEncrypted()
? seed.decrypt(getKeyCrypter(), DEFAULT_PASSPHRASE_FOR_MNEMONIC, aesKey)
: seed;
final List words = decryptedSeed.getMnemonicCode();
builder.append("Seed as words: ").append(InternalUtils.SPACE_JOINER.join(words)).append('\n');
builder.append("Seed as hex: ").append(decryptedSeed.toHexString()).append('\n');
} else {
if (seed.isEncrypted())
builder.append("Seed is encrypted\n");
}
builder.append("Seed birthday: ");
Optional seedCreationTime = seed.creationTime();
if (seedCreationTime.isPresent())
builder.append(seedCreationTime.get().getEpochSecond()).append(" [")
.append(TimeUtils.dateTimeFormat(seedCreationTime.get())).append("]");
else
builder.append("unknown");
builder.append("\n");
} else {
builder.append("Key birthday: ");
Optional watchingKeyCreationTime = watchingKey.creationTime();
if (watchingKeyCreationTime.isPresent())
builder.append(watchingKeyCreationTime.get().getEpochSecond()).append(" [")
.append(TimeUtils.dateTimeFormat(watchingKeyCreationTime.get())).append("]");
else
builder.append("unknown");
builder.append("\n");
}
builder.append("Ouput script type: ").append(outputScriptType).append('\n');
builder.append("Key to watch: ").append(watchingKey.serializePubB58(params.network(), outputScriptType))
.append('\n');
builder.append("Lookahead siz/thr: ").append(lookaheadSize).append('/').append(lookaheadThreshold).append('\n');
formatAddresses(includeLookahead, includePrivateKeys, aesKey, params, builder);
return builder.toString();
}
protected void formatAddresses(boolean includeLookahead, boolean includePrivateKeys, @Nullable AesKey aesKey,
NetworkParameters params, StringBuilder builder) {
for (DeterministicKey key : getKeys(includeLookahead, true)) {
String comment = null;
if (key.equals(getRootKey()))
comment = "root";
else if (key.equals(getWatchingKey()))
comment = "account";
else if (key.equals(internalParentKey))
comment = "internal";
else if (key.equals(externalParentKey))
comment = "external";
else if (internalParentKey.equals(key.getParent()) && key.getChildNumber().i() >= issuedInternalKeys)
comment = "*";
else if (externalParentKey.equals(key.getParent()) && key.getChildNumber().i() >= issuedExternalKeys)
comment = "*";
key.formatKeyWithAddress(includePrivateKeys, aesKey, builder, params.network(), outputScriptType, comment);
}
}
/** The number of signatures required to spend coins received by this keychain. */
public void setSigsRequiredToSpend(int sigsRequiredToSpend) {
this.sigsRequiredToSpend = sigsRequiredToSpend;
}
/**
* Returns the number of signatures required to spend transactions for this KeyChain. It's the N from
* N-of-M CHECKMULTISIG script for P2SH transactions and always 1 for other transaction types.
*/
public int getSigsRequiredToSpend() {
return sigsRequiredToSpend;
}
/** Returns the redeem script by its hash or null if this keychain did not generate the script. */
@Nullable
public RedeemData findRedeemDataByScriptHash(ByteString bytes) {
return null;
}
}