boofcv.abst.flow.FlowKlt_to_DenseOpticalFlow Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.flow;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.flow.DenseOpticalFlowKlt;
import boofcv.alg.transform.pyramid.PyramidOps;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.struct.flow.ImageFlow;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import boofcv.struct.pyramid.ImagePyramid;
import java.lang.reflect.Array;
/**
* Wrapper around {@link DenseOpticalFlowKlt} for {@link DenseOpticalFlow}.
*
* @author Peter Abeles
*/
public class FlowKlt_to_DenseOpticalFlow, D extends ImageGray>
implements DenseOpticalFlow
{
DenseOpticalFlowKlt flowKlt;
ImageGradient gradient;
ImagePyramid pyramidSrc;
ImagePyramid pyramidDst;
D[] srcDerivX;
D[] srcDerivY;
ImageType imageType;
public FlowKlt_to_DenseOpticalFlow(DenseOpticalFlowKlt flowKlt,
ImageGradient gradient,
ImagePyramid pyramidSrc,
ImagePyramid pyramidDst,
Class inputType , Class derivType ) {
if( pyramidSrc.getNumLayers() != pyramidDst.getNumLayers() )
throw new IllegalArgumentException("Pyramids do not have the same number of layers!");
this.flowKlt = flowKlt;
this.gradient = gradient;
this.pyramidSrc = pyramidSrc;
this.pyramidDst = pyramidDst;
srcDerivX = (D[])Array.newInstance(derivType,pyramidSrc.getNumLayers());
srcDerivY = (D[])Array.newInstance(derivType,pyramidSrc.getNumLayers());
for( int i = 0; i < srcDerivX.length; i++ ) {
srcDerivX[i] = GeneralizedImageOps.createSingleBand(derivType,1,1);
srcDerivY[i] = GeneralizedImageOps.createSingleBand(derivType,1,1);
}
imageType = ImageType.single(inputType);
}
@Override
public void process(I source, I destination, ImageFlow flow) {
pyramidSrc.process(source);
pyramidDst.process(destination);
PyramidOps.reshapeOutput(pyramidSrc,srcDerivX);
PyramidOps.reshapeOutput(pyramidSrc,srcDerivY);
PyramidOps.gradient(pyramidSrc, gradient, srcDerivX,srcDerivY);
flowKlt.process(pyramidSrc,srcDerivX,srcDerivY,pyramidDst,flow);
}
@Override
public ImageType getInputType() {
return imageType;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy