boofcv.alg.descriptor.UtilFeature Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.descriptor;
import boofcv.abst.feature.describe.DescribeRegionPoint;
import boofcv.abst.feature.detdesc.DetectDescribeMulti;
import boofcv.abst.feature.detdesc.DetectDescribePoint;
import boofcv.struct.feature.TupleDesc;
import boofcv.struct.feature.TupleDesc_F64;
import org.ddogleg.struct.FastQueue;
import java.util.List;
/**
* Various utilities related to image features
*
* @author Peter Abeles
*/
public class UtilFeature {
/**
* Creates a FastQueue and declares new instances of the descriptor using the provided
* {@link DetectDescribePoint}. The queue will have declareInstance set to true, otherwise
* why would you be using this function?
*/
public static
FastQueue createQueue( final DescribeRegionPoint, TD> detDesc , int initialMax ) {
return new FastQueue (initialMax,detDesc.getDescriptionType(),true) {
@Override
protected TD createInstance() {
return detDesc.createDescription();
}
};
}
/**
* Creates a FastQueue and declares new instances of the descriptor using the provided
* {@link DetectDescribePoint}. The queue will have declareInstance set to true, otherwise
* why would you be using this function?
*/
public static
FastQueue createQueue( final DetectDescribePoint, TD> detDesc , int initialMax ) {
return new FastQueue (initialMax,detDesc.getDescriptionType(),true) {
@Override
protected TD createInstance() {
return detDesc.createDescription();
}
};
}
/**
* Creates a FastQueue and declares new instances of the descriptor using the provided
* {@link DetectDescribePoint}. The queue will have declareInstance set to true, otherwise
* why would you be using this function?
*/
public static
FastQueue createQueue( final DetectDescribeMulti, TD> detDesc , int initialMax ) {
return new FastQueue (initialMax,detDesc.getDescriptionType(),true) {
@Override
protected TD createInstance() {
return detDesc.createDescription();
}
};
}
/**
* Concats the list of tuples together into one big feature. The combined feature must be large
* enough to store all the inputs.
*
* @param inputs List of tuples.
* @param combined Storage for combined output. If null a new instance will be declared.
* @return Resulting combined.
*/
public static TupleDesc_F64 combine( List inputs , TupleDesc_F64 combined ) {
int N = 0;
for (int i = 0; i < inputs.size(); i++) {
N += inputs.get(i).size();
}
if( combined == null ) {
combined = new TupleDesc_F64(N);
} else {
if (N != combined.size())
throw new RuntimeException("The combined feature needs to be " + N + " not " + combined.size());
}
int start = 0;
for (int i = 0; i < inputs.size(); i++) {
double v[] = inputs.get(i).value;
System.arraycopy(v,0,combined.value,start,v.length);
start += v.length;
}
return combined;
}
/**
*
* Normalized the tuple such that the L2-norm is equal to 1. This is also often referred to as
* the Euclidean or frobenius (all though that's a matrix norm).
*
*
*
* value[i] = value[i]/sqrt(sum(value[j]*value[j], for all j))
*
*
* @param desc tuple
*/
public static void normalizeL2( TupleDesc_F64 desc ) {
double norm = 0;
for (int i = 0; i < desc.size(); i++) {
double v = desc.value[i];
norm += v*v;
}
if( norm == 0 )
return;
norm = Math.sqrt(norm);
for (int i = 0; i < desc.size(); i++) {
desc.value[i] /= norm;
}
}
/**
*
* Normalized the tuple such that it's sum is equal to 1.
*
*
*
* value[i] = value[i]/sqrt(sum(value[j], for all j))
*
*
* @param desc tuple
*/
public static void normalizeSumOne( TupleDesc_F64 desc ) {
double sum = 0;
for (int i = 0; i < desc.size(); i++) {
double v = desc.value[i];
sum += v;
}
if( sum == 0 )
return;
for (int i = 0; i < desc.size(); i++) {
desc.value[i] /= sum;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy