All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.extract.NonMaxBlockRelaxed Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.extract;

import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_I32;

/**
 * 

* Implementation of {@link NonMaxBlock} which implements a relaxed maximum rule. *

* * @author Peter Abeles */ public abstract class NonMaxBlockRelaxed extends NonMaxBlock { // storage for local maximums Point2D_I32 foundMax[]; Point2D_I32 foundMin[]; protected NonMaxBlockRelaxed(boolean detectsMinimum, boolean detectsMaximum) { super(detectsMinimum, detectsMaximum); } public static class Max extends NonMaxBlockRelaxed { public Max() { super(false, true); } @Override protected void searchBlock( int x0 , int y0 , int x1 , int y1 , GrayF32 img ) { int numPeaks = 0; float peakVal = thresholdMax; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v > peakVal ) { peakVal = v; foundMax[0].set(x, y); numPeaks = 1; } else if( v == peakVal ) { foundMax[numPeaks++].set(x, y); } } } if( numPeaks > 0 && peakVal != Float.MAX_VALUE ) { for( int i = 0; i < numPeaks; i++ ) { Point2D_I32 p = foundMax[i]; checkLocalMax(p.x,p.y,peakVal,img); } } } } public static class Min extends NonMaxBlockRelaxed { public Min() { super(true, false); } @Override protected void searchBlock( int x0 , int y0 , int x1 , int y1 , GrayF32 img ) { int numPeaks = 0; float peakVal = thresholdMin; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v < peakVal ) { peakVal = v; foundMin[0].set(x, y); numPeaks = 1; } else if( v == peakVal ) { foundMin[numPeaks++].set(x, y); } } } if( numPeaks > 0 && peakVal != -Float.MAX_VALUE ) { for( int i = 0; i < numPeaks; i++ ) { Point2D_I32 p = foundMin[i]; checkLocalMin(p.x, p.y, peakVal, img); } } } } public static class MinMax extends NonMaxBlockRelaxed { public MinMax() { super(true, true); } @Override protected void searchBlock( int x0 , int y0 , int x1 , int y1 , GrayF32 img ) { int numMinPeaks = 0; float peakMinVal = thresholdMin; int numMaxPeaks = 0; float peakMaxVal = thresholdMax; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v < peakMinVal ) { peakMinVal = v; foundMin[0].set(x, y); numMinPeaks = 1; } else if( v == peakMinVal ) { foundMin[numMinPeaks++].set(x, y); } if( v > peakMaxVal ) { peakMaxVal = v; foundMax[0].set(x, y); numMaxPeaks = 1; } else if( v == peakMaxVal ) { foundMax[numMaxPeaks++].set(x, y); } } } if( numMinPeaks > 0 && peakMinVal != -Float.MAX_VALUE ) { for( int i = 0; i < numMinPeaks; i++ ) { Point2D_I32 p = foundMin[i]; checkLocalMin(p.x,p.y,peakMinVal,img); } } if( numMaxPeaks > 0 && peakMaxVal != Float.MAX_VALUE ) { for( int i = 0; i < numMaxPeaks; i++ ) { Point2D_I32 p = foundMax[i]; checkLocalMax(p.x,p.y,peakMaxVal,img); } } } } protected void checkLocalMax( int x_c , int y_c , float peakVal , GrayF32 img ) { int x0 = x_c-radius; int x1 = x_c+radius; int y0 = y_c-radius; int y1 = y_c+radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for( int y = y0; y <= y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x <= x1; x++ ) { float v = img.data[index++]; if( v > peakVal ) { // not a local maximum return; } } } localMax.add(x_c,y_c); } protected void checkLocalMin( int x_c , int y_c , float peakVal , GrayF32 img ) { int x0 = x_c-radius; int x1 = x_c+radius; int y0 = y_c-radius; int y1 = y_c+radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for( int y = y0; y <= y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x <= x1; x++ ) { float v = img.data[index++]; if( v < peakVal ) { // not a local minimum return; } } } localMin.add(x_c,y_c); } @Override public void setSearchRadius(int radius) { super.setSearchRadius(radius); int w = 2* radius +1; foundMax = new Point2D_I32[w*w]; for( int i = 0; i < foundMax.length; i++ ) foundMax[i] = new Point2D_I32(); foundMin = new Point2D_I32[w*w]; for( int i = 0; i < foundMin.length; i++ ) foundMin[i] = new Point2D_I32(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy