All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.interest.EasyGeneralFeatureDetector Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.interest;

import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.abst.filter.derivative.ImageHessian;
import boofcv.alg.filter.derivative.GImageDerivativeOps;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.factory.filter.derivative.FactoryDerivative;
import boofcv.struct.QueueCorner;
import boofcv.struct.image.ImageGray;

/**
 * Detects features using {@link GeneralFeatureDetector} but Handles all the derivative computations automatically.
 *
 * @author Peter Abeles
 */
public class EasyGeneralFeatureDetector, D extends ImageGray> {

	// Feature detector
	protected GeneralFeatureDetector detector;
	// Computes image gradient
	protected ImageGradient gradient;
	// computes hessian
	protected ImageHessian hessian;

	// storage for image derivatives
	protected D derivX; // first derivative x-axis
	protected D derivY; // first derivative y-axis
	protected D derivXX; // second derivative x-x
	protected D derivYY; // second derivative y-y
	protected D derivXY; // second derivative x-y

	/**
	 * Configures detector and uses default image derivatives.
	 *
	 * @param detector Feature detector.
	 * @param imageType Type of input image
	 * @param derivType If null then the derivative will be selected using the image type.
	 */
	public EasyGeneralFeatureDetector(GeneralFeatureDetector detector ,
									  Class imageType, Class derivType ) {
		this.detector = detector;

		if( derivType == null ) {
			derivType = GImageDerivativeOps.getDerivativeType(imageType);
		}

		if( detector.getRequiresGradient() || detector.getRequiresHessian()  ) {
			gradient = FactoryDerivative.sobel(imageType, derivType);
		}
		if( detector.getRequiresHessian() ) {
			hessian = FactoryDerivative.hessianSobel(derivType);
		}
		declareDerivativeImages(gradient, hessian, derivType);
	}

	/**
	 * Constructor which allows the user to specify how derivatives are computed
	 */
	public EasyGeneralFeatureDetector(GeneralFeatureDetector detector,
									  ImageGradient gradient,
									  ImageHessian hessian,
									  Class derivType ) {
		this.detector = detector;
		this.gradient = gradient;
		this.hessian = hessian;

		declareDerivativeImages(gradient, hessian, derivType);
	}

	/**
	 * Declare storage for image derivatives as needed
	 */
	private void declareDerivativeImages(ImageGradient gradient, ImageHessian hessian, Class derivType) {
		if( gradient != null || hessian != null ) {
			derivX = GeneralizedImageOps.createSingleBand(derivType, 1, 1);
			derivY = GeneralizedImageOps.createSingleBand(derivType,1,1);
		}
		if( hessian != null ) {
			derivXX = GeneralizedImageOps.createSingleBand(derivType,1,1);
			derivYY = GeneralizedImageOps.createSingleBand(derivType,1,1);
			derivXY = GeneralizedImageOps.createSingleBand(derivType,1,1);
		}
	}

	/**
	 * Detect features inside the image.  Excluding points in the exclude list.
	 *
	 * @param input Image being processed.
	 * @param exclude List of points that should not be returned.
	 */
	public void detect(T input, QueueCorner exclude ) {

		initializeDerivatives(input);

		if (detector.getRequiresGradient() || detector.getRequiresHessian())
			gradient.process(input, derivX, derivY);
		if (detector.getRequiresHessian())
			hessian.process(derivX, derivY, derivXX, derivYY, derivXY);

		detector.setExcludeMaximum(exclude);
		detector.process(input, derivX, derivY, derivXX, derivYY, derivXY);
	}

	/**
	 * Reshape derivative images to match the input image
	 */
	private void initializeDerivatives(T input) {
		// reshape derivatives if the input image has changed size
		if (detector.getRequiresGradient() || detector.getRequiresHessian()) {
			derivX.reshape(input.width, input.height);
			derivY.reshape(input.width, input.height);
		}
		if (detector.getRequiresHessian()) {
			derivXX.reshape(input.width, input.height);
			derivYY.reshape(input.width, input.height);
			derivXY.reshape(input.width, input.height);
		}
	}

	public GeneralFeatureDetector getDetector() {
		return detector;
	}

	public QueueCorner getMaximums() {
		return detector.getMaximums();
	}

	public QueueCorner getMinimums() {
		return detector.getMinimums();
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy