boofcv.alg.feature.detect.interest.FeatureLaplacePyramid Maven / Gradle / Ivy
Show all versions of boofcv-feature Show documentation
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.interest;
import boofcv.abst.feature.detect.interest.InterestPointScaleSpacePyramid;
import boofcv.abst.filter.ImageFunctionSparse;
import boofcv.abst.filter.derivative.AnyImageDerivative;
import boofcv.struct.QueueCorner;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.PyramidFloat;
import georegression.struct.point.Point2D_I16;
import java.util.ArrayList;
import java.util.List;
import static boofcv.alg.feature.detect.interest.FastHessianFeatureDetector.polyPeak;
/**
*
* Feature detector across image pyramids that uses the Laplacian to determine strength in scale-space.
*
*
* COMMENT ON SCALEPOWER: To normalize feature intensity across scales each feature intensity is multiplied by the scale to the power of 'scalePower'.
* See [1,2] for how to compute 'scalePower'. Inside of the image pyramid sub-sampling of the image causes the image
* gradient to be a factor of 'scale' larger than it would be without sub-sampling. In some situations this can negate
* the need to adjust feature intensity further.
*
*
* [1] Krystian Mikolajczyk and Cordelia Schmid, "Indexing based on scale invariant interest points" ICCV 2001. Proceedings.
* [2] Lindeberg, T., "Feature detection with automatic scale selection." IJCV 30(2) (1998) 79 – 116
*
*
* @author Peter Abeles
* @see boofcv.factory.feature.detect.interest.FactoryInterestPoint
*/
@SuppressWarnings({"unchecked"})
public class FeatureLaplacePyramid, D extends ImageGray>
implements InterestPointScaleSpacePyramid {
// used to compute feature intensity across scale space
private ImageFunctionSparse sparseLaplace;
// generalized feature detector. Used to find candidate features in each scale's image
private GeneralFeatureDetector detector;
private float baseThreshold;
// location of recently computed features in layers
protected int spaceIndex = 0;
protected List maximums = new ArrayList<>();
// List of found feature points
protected List foundPoints = new ArrayList<>();
protected AnyImageDerivative computeDerivative;
// how much the feature intensity is scaled in each level
// varies depending on feature type, used to adjust detection threshold
protected double scalePower;
/**
* Create a feature detector.
*
* @param detector Point feature detector which is used to find candidates in each scale level
* @param sparseLaplace Used to compute the Laplacian at each candidates
* @param computeDerivative Used to compute image derivatives
* @param scalePower Used to normalize features intensity across scale space. For many features this value should be one.
*/
public FeatureLaplacePyramid(GeneralFeatureDetector detector,
ImageFunctionSparse sparseLaplace,
AnyImageDerivative computeDerivative,
double scalePower) {
this.detector = detector;
this.baseThreshold = detector.getThreshold();
this.computeDerivative = computeDerivative;
this.sparseLaplace = sparseLaplace;
this.scalePower = scalePower;
}
/**
* Searches for features inside the provided scale space
*
* @param ss Scale space of an image
*/
@Override
public void detect(PyramidFloat ss) {
spaceIndex = 0;
foundPoints.clear();
// compute feature intensity in each level
for (int i = 1; i < ss.getNumLayers()-1; i++) {
// detect features in 2D space. Don't need to compute features at the tail ends of scale-space
// if (i > 0 && i < ss.getNumLayers() - 1)
// detectCandidateFeatures(ss.getLayer(i), ss.getSigma(i));
spaceIndex = i;
detectCandidateFeatures(ss.getLayer(i), ss.getSigma(i));
// find maximum in 3xNx3 (local image and scale space) region
findLocalScaleSpaceMax(ss, i);
// spaceIndex++;
// if (spaceIndex >= 3)
// spaceIndex = 0;
//
// // find maximum in 3x3x3 (local image and scale space) region
// if (i >= 2) {
// detectCandidateFeatures(ss.getLayer(i-i), ss.getSigma(i-1));
// findLocalScaleSpaceMax(ss, i - 1);
// }
}
}
/**
* Use the feature detector to find candidate features in each level. Only compute the needed image derivatives.
*/
private void detectCandidateFeatures(T image, double sigma ) {
// adjust corner intensity threshold based upon the current scale factor
float scaleThreshold = (float) (baseThreshold / Math.pow(sigma, scalePower));
detector.setThreshold(scaleThreshold);
computeDerivative.setInput(image);
D derivX = null, derivY = null;
D derivXX = null, derivYY = null, derivXY = null;
if (detector.getRequiresGradient()) {
derivX = computeDerivative.getDerivative(true);
derivY = computeDerivative.getDerivative(false);
}
if (detector.getRequiresHessian()) {
derivXX = computeDerivative.getDerivative(true, true);
derivYY = computeDerivative.getDerivative(false, false);
derivXY = computeDerivative.getDerivative(true, false);
}
detector.process(image, derivX, derivY, derivXX, derivYY, derivXY);
List m = maximums;
m.clear();
if( detector.isDetectMaximums() ) {
QueueCorner q = detector.getMaximums();
for (int i = 0; i < q.size; i++) {
m.add(q.get(i).copy());
}
}
if( detector.isDetectMinimums() ) {
QueueCorner q = detector.getMinimums();
for (int i = 0; i < q.size; i++) {
m.add(q.get(i).copy());
}
}
}
/**
* See if each feature is a maximum in its local scale-space.
*/
protected void findLocalScaleSpaceMax(PyramidFloat ss, int layerID) {
List candidates = maximums;
float scale0 = (float) ss.scale[layerID - 1];
float scale1 = (float) ss.scale[layerID];
float scale2 = (float) ss.scale[layerID + 1];
float sigma0 = (float) ss.getSigma(layerID - 1);
float sigma1 = (float) ss.getSigma(layerID);
float sigma2 = (float) ss.getSigma(layerID + 1);
// For laplacian its t^(2*gamma) where gamma = 3/4
float ss0 = (float) (Math.pow(sigma0, 2.0 * 0.75)/scale0);// Is this divide by scale correct?
float ss1 = (float) (Math.pow(sigma1, 2.0 * 0.75)/scale1);
float ss2 = (float) (Math.pow(sigma2, 2.0 * 0.75)/scale2);
for (Point2D_I16 c : candidates) {
GrayF32 intensity = detector.getIntensity();
float target = intensity.unsafe_get(c.x,c.y);
float fx,fy;
{
float x0 = intensity.unsafe_get(c.x - 1, c.y);
float x2 = intensity.unsafe_get(c.x + 1, c.y);
float y0 = intensity.unsafe_get(c.x, c.y - 1);
float y2 = intensity.unsafe_get(c.x, c.y + 1);
fx = c.x + polyPeak(x0, target, x2);
fy = c.y + polyPeak(y0, target, y2);
}
// fx=c.x;fy=c.y;
sparseLaplace.setImage(ss.getLayer(layerID));
float val = ss1 * (float) sparseLaplace.compute(c.x,c.y);
// search for local maximum or local minimum
float adj = Math.signum(val);
val *= adj;
// find pixel location in each image's local coordinate
int x0 = (int) (fx * scale1 / scale0 + 0.5);
int y0 = (int) (fy * scale1 / scale0 + 0.5);
int x2 = (int) (fx * scale1 / scale2 + 0.5);
int y2 = (int) (fy * scale1 / scale2 + 0.5);
if (checkMax(ss.getLayer(layerID - 1), adj*ss0,val, x0, y0) && checkMax(ss.getLayer(layerID + 1), adj*ss2,val, x2, y2)) {
sparseLaplace.setImage(ss.getLayer(layerID-1));
float s0 = ss0 * (float) sparseLaplace.compute(x0,y0)*adj;
sparseLaplace.setImage(ss.getLayer(layerID+1));
float s2 = ss2 * (float) sparseLaplace.compute(x2,y2)*adj;
double adjSigma;
double sigmaInterp = polyPeak(s0, val, s2); // scaled from -1 to 1
if( sigmaInterp < 0 ) {
adjSigma = sigma0*(-sigmaInterp) + (1+sigmaInterp)*sigma1;
} else {
adjSigma = sigma2*sigmaInterp + (1-sigmaInterp)*sigma1;
}
// put features into the scale of the upper image
foundPoints.add(new ScalePoint(fx * scale1, fy * scale1, adjSigma));
}
}
}
/**
* See if the best score is better than the local adjusted scores at this scale
*/
private boolean checkMax(T image, double adj, double bestScore, int c_x, int c_y) {
sparseLaplace.setImage(image);
boolean isMax = true;
beginLoop:
for (int i = c_y - 1; i <= c_y + 1; i++) {
for (int j = c_x - 1; j <= c_x + 1; j++) {
double value = adj*sparseLaplace.compute(j, i);
if (value >= bestScore) {
isMax = false;
break beginLoop;
}
}
}
return isMax;
}
@Override
public List getInterestPoints() {
return foundPoints;
}
}