All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.line.HoughTransformLinePolar Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.line;


import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.QueueCorner;
import boofcv.struct.feature.CachedSineCosine_F32;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import georegression.geometry.UtilLine2D_F32;
import georegression.metric.UtilAngle;
import georegression.struct.line.LineParametric2D_F32;
import georegression.struct.line.LinePolar2D_F32;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F32;

/**
 * 

* Hough transform which uses a polar line representation, distance from origin and angle (0 to 180 degrees). * Standard implementation of a hough transform. 1) Gradient intensity image is used to find edge pixels. * 2) All possible lines passing through that point are found. 3) Line parameters are summed up in the line image, * in which each pixel represents a coordinate in parameter space. * 3) Local maximums are found. *

*

By the nature of this algorithms, lines are forced to be discretized into parameter space. The range * can vary from +- the maximum range inside the image and the angle from 0 to PI radians. How * finely discretized an image is effects line detection accuracy. If too fine lines might not be detected * or it will be too noisy. *

*

* In the line image, the transform from line parameter coordinate to pixel coordinate is as follow:
* x = r*cos(theta) + centerX
* y = r*sin(theta) + centerY
*

* *

* USAGE NOTE: Duplicate/very similar lines are possible due to angles being cyclical. What happens is that if * a line's orientation lies along a boundary point its angles will be split up between top and bottom * of the transform. When lines are extracted using non-maximum it will detects peaks at the top * and bottom. *

* * @author Peter Abeles */ public class HoughTransformLinePolar { // extracts line from the transform NonMaxSuppression extractor; // stores returned lines FastQueue lines = new FastQueue<>(10, LineParametric2D_F32.class, true); // origin of the transform coordinate system int originX; int originY; // maximum allowed range double r_max; // contains a set of counts for detected lines in each pixel // floating point image used because that's what FeatureExtractor's take as input GrayF32 transform = new GrayF32(1,1); // found lines in transform space QueueCorner foundLines = new QueueCorner(10); // line intensities for later pruning GrowQueue_F32 foundIntensity = new GrowQueue_F32(10); // lookup tables for sine and cosine functions CachedSineCosine_F32 tableTrig; /** * Specifies parameters of transform. The minimum number of points specified in the extractor * is an important tuning parameter. * * @param extractor Extracts local maxima from transform space. * @param numBinsRange How many bins are be used for line range. * @param numBinsAngle How many bins are used for angle. */ public HoughTransformLinePolar(NonMaxSuppression extractor , int numBinsRange , int numBinsAngle) { this.extractor = extractor; transform.reshape(numBinsRange,numBinsAngle); tableTrig = new CachedSineCosine_F32(0,(float)Math.PI,numBinsAngle); } public int getNumBinsRange() { return transform.getWidth(); } public int getNumBinsAngle() { return transform.getHeight(); } /** * Computes the Hough transform of the image. * * @param binary Binary image that indicates which pixels lie on edges. */ public void transform( GrayU8 binary ) { ImageMiscOps.fill(transform, 0); originX = binary.width/2; originY = binary.height/2; r_max = Math.sqrt(originX*originX+originY*originY); for( int y = 0; y < binary.height; y++ ) { int start = binary.startIndex + y*binary.stride; int stop = start + binary.width; for( int index = start; index < stop; index++ ) { if( binary.data[index] != 0 ) { parameterize(index-start,y); } } } } /** * Searches for local maximas and converts into lines. * * @return Found lines in the image. */ public FastQueue extractLines() { lines.reset(); foundLines.reset(); foundIntensity.reset(); extractor.process(transform, null,null,null, foundLines); int w2 = transform.width/2; for( int i = 0; i < foundLines.size(); i++ ) { Point2D_I16 p = foundLines.get(i); float r = (float)(r_max*(p.x-w2)/w2); float c = tableTrig.c[p.y]; float s = tableTrig.s[p.y]; float x0 = r*c+originX; float y0 = r*s+originY; foundIntensity.push( transform.get(p.x,p.y)); LineParametric2D_F32 l = lines.grow(); l.p.set(x0,y0); l.slope.set(-s,c); Point2D_F64 p2 = new Point2D_F64(); lineToCoordinate(l,p2); } return lines; } /** * Compute the parameterized coordinate for the line */ public void lineToCoordinate(LineParametric2D_F32 line , Point2D_F64 coordinate ) { line = line.copy(); line.p.x -= originX; line.p.y -= originY; LinePolar2D_F32 polar = new LinePolar2D_F32(); UtilLine2D_F32.convert(line,polar); if( polar.angle < 0 ) { polar.distance = -polar.distance; polar.angle = UtilAngle.toHalfCircle(polar.angle); } int w2 = transform.width/2; coordinate.x = (int)Math.floor(polar.distance*w2/r_max) + w2; coordinate.y = polar.angle*transform.height/Math.PI; } /** * Converts the pixel coordinate into a line in parameter space */ public void parameterize( int x , int y ) { // put the point in a new coordinate system centered at the image's origin x -= originX; y -= originY; int w2 = transform.width/2; // The line's slope is encoded using the tangent angle. Those bins are along the image's y-axis for( int i = 0; i < transform.height; i++ ) { // distance of closest point on line from a line defined by the point (x,y) and // the tangent theta=PI*i/height double p = x*tableTrig.c[i] + y*tableTrig.s[i]; int col = (int)Math.floor(p * w2 / r_max) + w2; int index = transform.startIndex + i*transform.stride + col; transform.data[index]++; } } /** // * Returns the Hough transform image. * * @return Transform image. */ public GrayF32 getTransform() { return transform; } /** * Returns the intensity/edge count for each returned line. Useful when doing * post processing pruning. * * @return Array containing line intensities. */ public float[] getFoundIntensity() { return foundIntensity.data; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy