All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.orientation.OrientationHistogram Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.orientation;

import boofcv.abst.feature.orientation.OrientationGradient;
import boofcv.alg.InputSanityCheck;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ImageRectangle;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.image.ImageGray;


/**
 * 

* Estimates the orientation by creating a histogram of discrete angles around * the entire circle. The angle with the largest sum of edge intensities is considered * to be the direction of the region. If weighted a Gaussian kernel centered around the targeted * pixel is used. *

* * @author Peter Abeles */ public abstract class OrientationHistogram > implements OrientationGradient { // the region's radius protected double objectToSample; // the radius at the set scale protected int radiusScale; // image x and y derivatives protected D derivX; protected D derivY; // local variable used to define the region being examined. // this makes it easy to avoid going outside the image protected ImageRectangle rect = new ImageRectangle(); // number of different angles it will consider protected int numAngles; // used to compute the score for each angle protected double sumDerivX[]; protected double sumDerivY[]; // resolution of each angle protected double angleDiv; // used to round towards the nearest angle protected double angleRound; // if it uses weights or not protected boolean isWeighted; // optional weights protected Kernel2D_F32 weights; /** * Constructor. Specify region size and if it is weighted or not. * * @param objectToSample Converts the size of the object to the sample region size * @param numAngles Number of discrete angles that the orientation is estimated inside of */ public OrientationHistogram( double objectToSample, int numAngles , boolean isWeighted ) { this.numAngles = numAngles; this.objectToSample = objectToSample; sumDerivX = new double[ numAngles ]; sumDerivY = new double[ numAngles ]; angleDiv = 2.0*Math.PI/numAngles; angleRound = Math.PI+angleDiv/2.0; this.isWeighted = isWeighted; } public double getObjectToSample() { return objectToSample; } /** * Specify the size of the region that is considered. * * @param objectToSample */ public void setObjectToSample(int objectToSample) { this.objectToSample = objectToSample; setObjectRadius(objectToSample); } public Kernel2D_F32 getWeights() { return weights; } @Override public void setObjectRadius(double objectRadius) { radiusScale = (int)Math.ceil(objectRadius*objectToSample); if( isWeighted ) { weights = FactoryKernelGaussian.gaussian(2,true, 32, -1,radiusScale); } } @Override public void setImage( D derivX, D derivY) { InputSanityCheck.checkSameShape(derivX,derivY); this.derivX = derivX; this.derivY = derivY; } @Override public double compute(double X, double Y) { int c_x = (int)X; int c_y = (int)Y; // compute the visible region while taking in account // the image borders rect.x0 = c_x-radiusScale; rect.y0 = c_y-radiusScale; rect.x1 = c_x+radiusScale+1; rect.y1 = c_y+radiusScale+1; BoofMiscOps.boundRectangleInside(derivX,rect); for( int i = 0; i < numAngles; i++ ) { sumDerivX[i] = 0; sumDerivY[i] = 0; } if( weights == null ) computeUnweightedScore(); else computeWeightedScore(c_x,c_y); // find the angle with the best score double bestScore = -1; int bestIndex = -1; double bestX=-1; double bestY=-1; for( int i = 0; i < numAngles; i++ ) { double x = sumDerivX[i]; double y = sumDerivY[i]; double score = x*x + y*y; if( score > bestScore ) { bestScore = score; bestIndex = i; bestX = x; bestY = y; } } return Math.atan2(bestY,bestX); } /** * Compute the score without using the optional weights */ protected abstract void computeUnweightedScore(); /** * Compute the score using the weighting kernel. */ protected abstract void computeWeightedScore(int c_x , int c_y ); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy