All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.orientation.impl.ImplOrientationAverage_S32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.orientation.impl;

import boofcv.alg.feature.orientation.OrientationAverage;
import boofcv.struct.image.GrayS32;


/** 
 * 

* Implementation of {@link OrientationAverage} for a specific image type. *

* *

* WARNING: Do not modify. Automatically generated by {@link GenerateImplOrientationAverage}. *

* * @author Peter Abeles */ public class ImplOrientationAverage_S32 extends OrientationAverage { public ImplOrientationAverage_S32(double objectToSample,boolean weighted) { super(objectToSample,weighted); } @Override public Class getImageType() { return GrayS32.class; } @Override protected double computeUnweightedScore() { float sumX=0,sumY=0; for( int y = rect.y0; y < rect.y1; y++ ) { int indexX = derivX.startIndex + derivX.stride*y + rect.x0; int indexY = derivY.startIndex + derivY.stride*y + rect.x0; for( int x = rect.x0; x < rect.x1; x++ , indexX++ , indexY++ ) { sumX += derivX.data[indexX]; sumY += derivY.data[indexY]; } } return Math.atan2(sumY,sumX); } @Override protected double computeWeightedScore(int c_x, int c_y) { float sumX=0,sumY=0; for( int y = rect.y0; y < rect.y1; y++ ) { int indexX = derivX.startIndex + derivX.stride*y + rect.x0; int indexY = derivY.startIndex + derivY.stride*y + rect.x0; int indexW = (y-c_y+radiusScale)*weights.width + rect.x0-c_x+radiusScale; for( int x = rect.x0; x < rect.x1; x++ , indexX++ , indexY++ , indexW++ ) { float w = weights.data[indexW]; sumX += w * derivX.data[indexX]; sumY += w * derivY.data[indexY]; } } return Math.atan2(sumY,sumX); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy