boofcv.alg.background.stationary.BackgroundStationaryBasic_PL Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.stationary;
import boofcv.alg.InputSanityCheck;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.core.image.FactoryGImageMultiBand;
import boofcv.core.image.GConvertImage;
import boofcv.core.image.GImageMultiBand;
import boofcv.struct.image.*;
/**
* Implementation of {@link BackgroundStationaryBasic} for {@link ImageGray}.
*
* @author Peter Abeles
*/
public class BackgroundStationaryBasic_PL>
extends BackgroundStationaryBasic>
{
// storage for background image
protected Planar background;
// wrapper which provides abstraction across image types
protected GImageMultiBand inputWrapper;
protected float inputPixels[];
public BackgroundStationaryBasic_PL(float learnRate, float threshold,
ImageType> imageType) {
super(learnRate, threshold, imageType);
int numBands = imageType.getNumBands();
background = new Planar<>(GrayF32.class,0,0,numBands);
inputWrapper = FactoryGImageMultiBand.create(imageType);
inputPixels = new float[numBands];
}
/**
* Returns the background image.
*
* @return background image.
*/
public Planar getBackground() {
return background;
}
@Override
public void reset() {
background.reshape(0,0);
}
@Override
public void updateBackground( Planar frame) {
if( background.width != frame.width ) {
background.reshape(frame.width, frame.height);
GConvertImage.convert(frame, background);
return;
} else {
InputSanityCheck.checkSameShape(background,frame);
}
inputWrapper.wrap(frame);
int numBands = background.getNumBands();
float minusLearn = 1.0f - learnRate;
int indexBG = 0;
for (int y = 0; y < frame.height; y++) {
int indexInput = frame.startIndex + y*frame.stride;
int end = indexInput + frame.width;
while( indexInput < end ) {
inputWrapper.getF(indexInput, inputPixels);
for (int band = 0; band < numBands; band++) {
GrayF32 backgroundBand = background.getBand(band);
backgroundBand.data[indexBG] = minusLearn*backgroundBand.data[indexBG] + learnRate*inputPixels[band];
}
indexInput++;
indexBG++;
}
}
}
@Override
public void segment(Planar frame, GrayU8 segmented) {
if( background.width != frame.width ) {
ImageMiscOps.fill(segmented,unknownValue);
return;
}
InputSanityCheck.checkSameShape(background,frame,segmented);
inputWrapper.wrap(frame);
int numBands = background.getNumBands();
float thresholdSq = numBands*threshold*threshold;
int indexBG = 0;
for (int y = 0; y < frame.height; y++) {
int indexInput = frame.startIndex + y*frame.stride;
int indexSegmented = segmented.startIndex + y*segmented.stride;
int end = indexInput + frame.width;
while( indexInput < end ) {
inputWrapper.getF(indexInput, inputPixels);
double sumErrorSq = 0;
for (int band = 0; band < numBands; band++) {
float diff = background.getBand(band).data[indexBG] - inputPixels[band];
sumErrorSq += diff*diff;
}
if (sumErrorSq <= thresholdSq) {
segmented.data[indexSegmented] = 0;
} else {
segmented.data[indexSegmented] = 1;
}
indexInput++;
indexSegmented++;
indexBG++;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy