boofcv.alg.feature.describe.DescribePointSift Maven / Gradle / Ivy
Show all versions of boofcv-feature Show documentation
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.describe;
import boofcv.core.image.FactoryGImageGray;
import boofcv.core.image.GImageGray;
import boofcv.struct.feature.TupleDesc_F64;
import boofcv.struct.image.ImageGray;
import georegression.metric.UtilAngle;
/**
* A faithful implementation of the SIFT descriptor.
* The descriptor is computed inside of a square grid which is scaled and rotated. Each grid cell is composed
* of a square sub-region. If the sub-region is 4x4 and the outer grid is 5x5 then a total area of size 20x20
* is sampled. For each sub-region a histogram with N bins of orientations is computed. Orientation from each
* sample point comes from the image's spacial derivative. If the outer grid is 4x4 and the histogram N=8, then
* the total descriptor will be 128 elements.
*
* When a point is sample, its orientation (-pi to pi) and magnitude sqrt(dx**2 + dy**2) are both computed. A
* contribution from this sample point is added to the entire descriptor and weighted using trilinear interpolation
* (outer grid x-y coordinate, and orientation bin), Gaussian distribution centered at key point location, and the
* magnitude.
*
* There are no intentional differences from the paper. However the paper is ambiguous in some places.
*
* - Interpolation method for sampling image pixels isn't specified. Nearest-neighbor is assumed and that's what
* VLFeat uses too.
* - Size of sample region. Oddly enough, I can't find this very important parameter specified anywhere.
* The suggested value comes from empirical testing.
*
*
*
* [1] Lowe, D. "Distinctive image features from scale-invariant keypoints".
* International Journal of Computer Vision, 60, 2 (2004), pp.91--110.
*
*
* @author Peter Abeles
*/
public class DescribePointSift extends DescribeSiftCommon {
// spacial derivatives of input image
GImageGray imageDerivX, imageDerivY;
// conversion from scale-space sigma to image pixels
double sigmaToPixels;
// reference to user provided descriptor in which results are saved to
TupleDesc_F64 descriptor;
/**
* Configures the descriptor.
*
* @param widthSubregion Width of sub-region in samples. Try 4
* @param widthGrid Width of grid in subregions. Try 4.
* @param numHistogramBins Number of bins in histogram. Try 8
* @param sigmaToPixels Conversion of sigma to pixels. Used to scale the descriptor region. Try 1.5 ??????
* @param weightingSigmaFraction Sigma for Gaussian weighting function is set to this value * region width. Try 0.5
* @param maxDescriptorElementValue Helps with non-affine changes in lighting. See paper. Try 0.2
*/
public DescribePointSift(int widthSubregion, int widthGrid, int numHistogramBins,
double sigmaToPixels, double weightingSigmaFraction,
double maxDescriptorElementValue , Class derivType ) {
super(widthSubregion,widthGrid,numHistogramBins,weightingSigmaFraction,maxDescriptorElementValue);
this.sigmaToPixels = sigmaToPixels;
imageDerivX = FactoryGImageGray.create(derivType);
imageDerivY = FactoryGImageGray.create(derivType);
}
/**
* Sets the image spacial derivatives. These should be computed from an image at the appropriate scale
* in scale-space.
*
* @param derivX x-derivative of input image
* @param derivY y-derivative of input image
*/
public void setImageGradient(Deriv derivX , Deriv derivY ) {
this.imageDerivX.wrap(derivX);
this.imageDerivY.wrap(derivY);
}
/**
* Computes the SIFT descriptor for the specified key point
*
* @param c_x center of key point. x-axis
* @param c_y center of key point. y-axis
* @param sigma Computed sigma in scale-space for this point
* @param orientation Orientation of keypoint in radians
* @param descriptor (output) Storage for computed descriptor. Make sure it's the appropriate length first
*/
public void process( double c_x , double c_y , double sigma , double orientation , TupleDesc_F64 descriptor )
{
this.descriptor = descriptor;
descriptor.fill(0);
computeRawDescriptor(c_x, c_y, sigma, orientation);
normalizeDescriptor(descriptor,maxDescriptorElementValue);
}
/**
* Computes the descriptor by sampling the input image. This is raw because the descriptor hasn't been massaged
* yet.
*/
void computeRawDescriptor(double c_x, double c_y, double sigma, double orientation) {
double c = Math.cos(orientation);
double s = Math.sin(orientation);
float fwidthSubregion = widthSubregion;
int sampleWidth = widthGrid*widthSubregion;
double sampleRadius = sampleWidth/2;
double sampleToPixels = sigma*sigmaToPixels;
Deriv image = (Deriv)imageDerivX.getImage();
for (int sampleY = 0; sampleY < sampleWidth; sampleY++) {
float subY = sampleY/fwidthSubregion;
double y = sampleToPixels*(sampleY-sampleRadius);
for (int sampleX = 0; sampleX < sampleWidth; sampleX++) {
// coordinate of samples in terms of sub-region. Center of sample point, hence + 0.5f
float subX = sampleX/fwidthSubregion;
// recentered local pixel sample coordinate
double x = sampleToPixels*(sampleX-sampleRadius);
// pixel coordinate in the image that is to be sampled. Note the rounding
// If the pixel coordinate is -1 < x < 0 then it will round to 0 instead of -1, but the rounding
// method below is WAY faster than Math.round() so this is a small loss.
int pixelX = (int)(x*c - y*s + c_x + 0.5);
int pixelY = (int)(x*s + y*c + c_y + 0.5);
// skip pixels outside of the image
if( image.isInBounds(pixelX,pixelY) ) {
// spacial image derivative at this point
float spacialDX = imageDerivX.unsafe_getF(pixelX, pixelY);
float spacialDY = imageDerivY.unsafe_getF(pixelX, pixelY);
double adjDX = c*spacialDX + s*spacialDY;
double adjDY = -s*spacialDX + c*spacialDY;
double angle = UtilAngle.domain2PI(Math.atan2(adjDY,adjDX));
float weightGaussian = gaussianWeight[sampleY*sampleWidth+sampleX];
float weightGradient = (float)Math.sqrt(spacialDX*spacialDX + spacialDY*spacialDY);
// trilinear interpolation intro descriptor
trilinearInterpolation(weightGaussian*weightGradient,subX,subY,angle, descriptor);
}
}
}
}
}