All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.describe.DescribePointSift Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.describe;

import boofcv.core.image.FactoryGImageGray;
import boofcv.core.image.GImageGray;
import boofcv.struct.feature.TupleDesc_F64;
import boofcv.struct.image.ImageGray;
import georegression.metric.UtilAngle;

/**
 * 

A faithful implementation of the SIFT descriptor.

*

The descriptor is computed inside of a square grid which is scaled and rotated. Each grid cell is composed * of a square sub-region. If the sub-region is 4x4 and the outer grid is 5x5 then a total area of size 20x20 * is sampled. For each sub-region a histogram with N bins of orientations is computed. Orientation from each * sample point comes from the image's spacial derivative. If the outer grid is 4x4 and the histogram N=8, then * the total descriptor will be 128 elements.

* *

When a point is sample, its orientation (-pi to pi) and magnitude sqrt(dx**2 + dy**2) are both computed. A * contribution from this sample point is added to the entire descriptor and weighted using trilinear interpolation * (outer grid x-y coordinate, and orientation bin), Gaussian distribution centered at key point location, and the * magnitude.

* *

There are no intentional differences from the paper. However the paper is ambiguous in some places.

*
    *
  • Interpolation method for sampling image pixels isn't specified. Nearest-neighbor is assumed and that's what * VLFeat uses too.
  • *
  • Size of sample region. Oddly enough, I can't find this very important parameter specified anywhere. * The suggested value comes from empirical testing.
  • *
* *

* [1] Lowe, D. "Distinctive image features from scale-invariant keypoints". * International Journal of Computer Vision, 60, 2 (2004), pp.91--110. *

* * @author Peter Abeles */ public class DescribePointSift extends DescribeSiftCommon { // spacial derivatives of input image GImageGray imageDerivX, imageDerivY; // conversion from scale-space sigma to image pixels double sigmaToPixels; // reference to user provided descriptor in which results are saved to TupleDesc_F64 descriptor; /** * Configures the descriptor. * * @param widthSubregion Width of sub-region in samples. Try 4 * @param widthGrid Width of grid in subregions. Try 4. * @param numHistogramBins Number of bins in histogram. Try 8 * @param sigmaToPixels Conversion of sigma to pixels. Used to scale the descriptor region. Try 1.5 ?????? * @param weightingSigmaFraction Sigma for Gaussian weighting function is set to this value * region width. Try 0.5 * @param maxDescriptorElementValue Helps with non-affine changes in lighting. See paper. Try 0.2 */ public DescribePointSift(int widthSubregion, int widthGrid, int numHistogramBins, double sigmaToPixels, double weightingSigmaFraction, double maxDescriptorElementValue , Class derivType ) { super(widthSubregion,widthGrid,numHistogramBins,weightingSigmaFraction,maxDescriptorElementValue); this.sigmaToPixels = sigmaToPixels; imageDerivX = FactoryGImageGray.create(derivType); imageDerivY = FactoryGImageGray.create(derivType); } /** * Sets the image spacial derivatives. These should be computed from an image at the appropriate scale * in scale-space. * * @param derivX x-derivative of input image * @param derivY y-derivative of input image */ public void setImageGradient(Deriv derivX , Deriv derivY ) { this.imageDerivX.wrap(derivX); this.imageDerivY.wrap(derivY); } /** * Computes the SIFT descriptor for the specified key point * * @param c_x center of key point. x-axis * @param c_y center of key point. y-axis * @param sigma Computed sigma in scale-space for this point * @param orientation Orientation of keypoint in radians * @param descriptor (output) Storage for computed descriptor. Make sure it's the appropriate length first */ public void process( double c_x , double c_y , double sigma , double orientation , TupleDesc_F64 descriptor ) { this.descriptor = descriptor; descriptor.fill(0); computeRawDescriptor(c_x, c_y, sigma, orientation); normalizeDescriptor(descriptor,maxDescriptorElementValue); } /** * Computes the descriptor by sampling the input image. This is raw because the descriptor hasn't been massaged * yet. */ void computeRawDescriptor(double c_x, double c_y, double sigma, double orientation) { double c = Math.cos(orientation); double s = Math.sin(orientation); float fwidthSubregion = widthSubregion; int sampleWidth = widthGrid*widthSubregion; double sampleRadius = sampleWidth/2; double sampleToPixels = sigma*sigmaToPixels; Deriv image = (Deriv)imageDerivX.getImage(); for (int sampleY = 0; sampleY < sampleWidth; sampleY++) { float subY = sampleY/fwidthSubregion; double y = sampleToPixels*(sampleY-sampleRadius); for (int sampleX = 0; sampleX < sampleWidth; sampleX++) { // coordinate of samples in terms of sub-region. Center of sample point, hence + 0.5f float subX = sampleX/fwidthSubregion; // recentered local pixel sample coordinate double x = sampleToPixels*(sampleX-sampleRadius); // pixel coordinate in the image that is to be sampled. Note the rounding // If the pixel coordinate is -1 < x < 0 then it will round to 0 instead of -1, but the rounding // method below is WAY faster than Math.round() so this is a small loss. int pixelX = (int)(x*c - y*s + c_x + 0.5); int pixelY = (int)(x*s + y*c + c_y + 0.5); // skip pixels outside of the image if( image.isInBounds(pixelX,pixelY) ) { // spacial image derivative at this point float spacialDX = imageDerivX.unsafe_getF(pixelX, pixelY); float spacialDY = imageDerivY.unsafe_getF(pixelX, pixelY); double adjDX = c*spacialDX + s*spacialDY; double adjDY = -s*spacialDX + c*spacialDY; double angle = UtilAngle.domain2PI(Math.atan2(adjDY,adjDX)); float weightGaussian = gaussianWeight[sampleY*sampleWidth+sampleX]; float weightGradient = (float)Math.sqrt(spacialDX*spacialDX + spacialDY*spacialDY); // trilinear interpolation intro descriptor trilinearInterpolation(weightGaussian*weightGradient,subX,subY,angle, descriptor); } } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy