All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.describe.impl.ImplDescribeBinaryCompare_F32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.describe.impl;

import boofcv.alg.feature.describe.DescribePointBinaryCompare;
import boofcv.alg.feature.describe.brief.BinaryCompareDefinition_I32;
import boofcv.struct.feature.TupleDesc_B;
import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_I32;

import java.util.Arrays;

/**
 * 

* Implementation of {@link DescribePointBinaryCompare} for a specific image type. *

* *

* WARNING: Do not modify. Automatically generated by {@link GenerateImplDescribeBinaryCompare}. *

* * @author Peter Abeles */ public class ImplDescribeBinaryCompare_F32 extends DescribePointBinaryCompare { public ImplDescribeBinaryCompare_F32(BinaryCompareDefinition_I32 definition) { super(definition); } @Override public void processInside( int c_x , int c_y , TupleDesc_B feature ) { Arrays.fill(feature.data, 0); int index = image.startIndex + image.stride*c_y + c_x; for( int i = 0; i < definition.compare.length; i += 32 ) { int end = Math.min(definition.compare.length,i+32); float valA = image.data[index + offsetsA[i]]; float valB = image.data[index + offsetsB[i]]; int desc = valA < valB ? 1 : 0; for( int j = i+1; j < end; j++ ) { valA = image.data[index + offsetsA[j]]; valB = image.data[index + offsetsB[j]]; desc *= 2; if( valA < valB ) { desc += 1; } } feature.data[ i/32 ] = desc; } } @Override public void processBorder( int c_x , int c_y , TupleDesc_B feature ) { Arrays.fill(feature.data, 0); int index = image.startIndex + image.stride*c_y + c_x; for( int i = 0; i < definition.compare.length; i += 32 ) { int end = Math.min(definition.compare.length,i+32); int desc = 0; for( int j = i; j < end; j++ ) { Point2D_I32 c = definition.compare[j]; Point2D_I32 p_a = definition.samplePoints[c.x]; Point2D_I32 p_b = definition.samplePoints[c.y]; if( image.isInBounds(p_a.x + c_x , p_a.y + c_y) && image.isInBounds(p_b.x + c_x , p_b.y + c_y) ){ float valA = image.data[index + offsetsA[j]]; float valB = image.data[index + offsetsB[j]]; desc *= 2; if( valA < valB ) { desc += 1; } } } feature.data[ i/32 ] = desc; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy