boofcv.alg.feature.detect.line.HoughTransformLinePolar Maven / Gradle / Ivy
Show all versions of boofcv-feature Show documentation
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.line;
import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.QueueCorner;
import boofcv.struct.feature.CachedSineCosine_F32;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import georegression.geometry.UtilLine2D_F32;
import georegression.metric.UtilAngle;
import georegression.struct.line.LineParametric2D_F32;
import georegression.struct.line.LinePolar2D_F32;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F32;
/**
*
* Hough transform which uses a polar line representation, distance from origin and angle (0 to 180 degrees).
* Standard implementation of a hough transform. 1) Gradient intensity image is used to find edge pixels.
* 2) All possible lines passing through that point are found. 3) Line parameters are summed up in the line image,
* in which each pixel represents a coordinate in parameter space.
* 3) Local maximums are found.
*
* By the nature of this algorithms, lines are forced to be discretized into parameter space. The range
* can vary from +- the maximum range inside the image and the angle from 0 to PI radians. How
* finely discretized an image is effects line detection accuracy. If too fine lines might not be detected
* or it will be too noisy.
*
*
* In the line image, the transform from line parameter coordinate to pixel coordinate is as follow:
* x = r*cos(theta) + centerX
* y = r*sin(theta) + centerY
*
*
*
* USAGE NOTE: Duplicate/very similar lines are possible due to angles being cyclical. What happens is that if
* a line's orientation lies along a boundary point its angles will be split up between top and bottom
* of the transform. When lines are extracted using non-maximum it will detects peaks at the top
* and bottom.
*
*
* @author Peter Abeles
*/
public class HoughTransformLinePolar {
// extracts line from the transform
NonMaxSuppression extractor;
// stores returned lines
FastQueue lines = new FastQueue<>(10, LineParametric2D_F32.class, true);
// origin of the transform coordinate system
int originX;
int originY;
// maximum allowed range
double r_max;
// contains a set of counts for detected lines in each pixel
// floating point image used because that's what FeatureExtractor's take as input
GrayF32 transform = new GrayF32(1,1);
// found lines in transform space
QueueCorner foundLines = new QueueCorner(10);
// line intensities for later pruning
GrowQueue_F32 foundIntensity = new GrowQueue_F32(10);
// lookup tables for sine and cosine functions
CachedSineCosine_F32 tableTrig;
/**
* Specifies parameters of transform. The minimum number of points specified in the extractor
* is an important tuning parameter.
*
* @param extractor Extracts local maxima from transform space.
* @param numBinsRange How many bins are be used for line range.
* @param numBinsAngle How many bins are used for angle.
*/
public HoughTransformLinePolar(NonMaxSuppression extractor , int numBinsRange , int numBinsAngle) {
this.extractor = extractor;
transform.reshape(numBinsRange,numBinsAngle);
tableTrig = new CachedSineCosine_F32(0,(float)Math.PI,numBinsAngle);
}
public int getNumBinsRange() {
return transform.getWidth();
}
public int getNumBinsAngle() {
return transform.getHeight();
}
/**
* Computes the Hough transform of the image.
*
* @param binary Binary image that indicates which pixels lie on edges.
*/
public void transform( GrayU8 binary )
{
ImageMiscOps.fill(transform, 0);
originX = binary.width/2;
originY = binary.height/2;
r_max = Math.sqrt(originX*originX+originY*originY);
for( int y = 0; y < binary.height; y++ ) {
int start = binary.startIndex + y*binary.stride;
int stop = start + binary.width;
for( int index = start; index < stop; index++ ) {
if( binary.data[index] != 0 ) {
parameterize(index-start,y);
}
}
}
}
/**
* Searches for local maximas and converts into lines.
*
* @return Found lines in the image.
*/
public FastQueue extractLines() {
lines.reset();
foundLines.reset();
foundIntensity.reset();
extractor.process(transform, null,null,null, foundLines);
int w2 = transform.width/2;
for( int i = 0; i < foundLines.size(); i++ ) {
Point2D_I16 p = foundLines.get(i);
float r = (float)(r_max*(p.x-w2)/w2);
float c = tableTrig.c[p.y];
float s = tableTrig.s[p.y];
float x0 = r*c+originX;
float y0 = r*s+originY;
foundIntensity.push( transform.get(p.x,p.y));
LineParametric2D_F32 l = lines.grow();
l.p.set(x0,y0);
l.slope.set(-s,c);
Point2D_F64 p2 = new Point2D_F64();
lineToCoordinate(l,p2);
}
return lines;
}
/**
* Compute the parameterized coordinate for the line
*/
public void lineToCoordinate(LineParametric2D_F32 line , Point2D_F64 coordinate ) {
line = line.copy();
line.p.x -= originX;
line.p.y -= originY;
LinePolar2D_F32 polar = new LinePolar2D_F32();
UtilLine2D_F32.convert(line,polar);
if( polar.angle < 0 ) {
polar.distance = -polar.distance;
polar.angle = UtilAngle.toHalfCircle(polar.angle);
}
int w2 = transform.width/2;
coordinate.x = (int)Math.floor(polar.distance*w2/r_max) + w2;
coordinate.y = polar.angle*transform.height/Math.PI;
}
/**
* Converts the pixel coordinate into a line in parameter space
*/
public void parameterize( int x , int y )
{
// put the point in a new coordinate system centered at the image's origin
x -= originX;
y -= originY;
int w2 = transform.width/2;
// The line's slope is encoded using the tangent angle. Those bins are along the image's y-axis
for( int i = 0; i < transform.height; i++ ) {
// distance of closest point on line from a line defined by the point (x,y) and
// the tangent theta=PI*i/height
double p = x*tableTrig.c[i] + y*tableTrig.s[i];
int col = (int)Math.floor(p * w2 / r_max) + w2;
int index = transform.startIndex + i*transform.stride + col;
transform.data[index]++;
}
}
/**
// * Returns the Hough transform image.
*
* @return Transform image.
*/
public GrayF32 getTransform() {
return transform;
}
/**
* Returns the intensity/edge count for each returned line. Useful when doing
* post processing pruning.
*
* @return Array containing line intensities.
*/
public float[] getFoundIntensity() {
return foundIntensity.data;
}
}