All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.disparity.impl.ImplSelectSparseStandardWta_S32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.disparity.impl;

import boofcv.alg.feature.disparity.SelectSparseStandardWta;

/**
 * 

* Implementation of {@link SelectSparseStandardWta} for score arrays of type S32. *

* *

* DO NOT MODIFY. Generated by {@link GenerateSelectSparseStandardWta}. *

* * @author Peter Abeles */ public class ImplSelectSparseStandardWta_S32 extends SelectSparseStandardWta { // texture threshold, use an integer value for speed. protected int textureThreshold; protected static final int discretizer = 10000; public ImplSelectSparseStandardWta_S32(int maxError, double texture) { super(maxError,texture); } @Override protected void setTexture( double texture ) { this.textureThreshold = (int)(discretizer *texture); } @Override public boolean select(int[] scores, int maxDisparity) { int disparity = 0; int best = scores[0]; for( int i = 1; i < maxDisparity; i++ ) { if( scores[i] < best ) { best = scores[i]; disparity = i; } } if( best > maxError ) { return false; } else if( textureThreshold > 0 ) { // find the second best disparity value and exclude its neighbors int secondBest = Integer.MAX_VALUE; for( int i = 0; i < disparity-1; i++ ) { if( scores[i] < secondBest ) secondBest = scores[i]; } for( int i = disparity+2; i < maxDisparity; i++ ) { if( scores[i] < secondBest ) secondBest = scores[i]; } // similar scores indicate lack of texture // C = (C2-C1)/C1 if( discretizer*(secondBest-best) <= textureThreshold*best ) return false; } this.disparity = disparity; return true; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy