boofcv.alg.feature.disparity.impl.SelectSparseStandardSubpixel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.disparity.impl;
/**
*
* Subpixel accuracy for disparity. See {@link SelectRectSubpixel} for more details on the
* mathematics.
*
*
* @author Peter Abeles
*/
public class SelectSparseStandardSubpixel {
public static class S32 extends ImplSelectSparseStandardWta_S32 {
public S32(int maxError, double texture) {
super(maxError, texture);
}
@Override
public boolean select(int[] scores, int maxDisparity) {
if( super.select(scores, maxDisparity) ) {
int disparityValue = (int)disparity;
if( disparityValue == 0 || disparityValue == maxDisparity-1) {
return true;
} else {
int c0 = scores[disparityValue-1];
int c1 = scores[disparityValue];
int c2 = scores[disparityValue+1];
double offset = (double)(c0-c2)/(double)(2*(c0-2*c1+c2));
disparity += offset;
return true;
}
} else {
return false;
}
}
}
public static class F32 extends ImplSelectSparseStandardWta_F32 {
public F32(int maxError, double texture) {
super(maxError, texture);
}
@Override
public boolean select(float[] scores, int maxDisparity) {
if( super.select(scores, maxDisparity) ) {
int disparityValue = (int)disparity;
if( disparityValue == 0 || disparityValue == maxDisparity-1) {
return true;
} else {
float c0 = scores[disparityValue-1];
float c1 = scores[disparityValue];
float c2 = scores[disparityValue+1];
float offset = (c0-c2)/(2f*(c0-2*c1+c2));
disparity += offset;
return true;
}
} else {
return false;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy