boofcv.alg.feature.orientation.impl.ImplOrientationAverage_S16 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.orientation.impl;
import boofcv.alg.feature.orientation.OrientationAverage;
import boofcv.struct.image.GrayS16;
/**
*
* Implementation of {@link OrientationAverage} for a specific image type.
*
*
*
* WARNING: Do not modify. Automatically generated by {@link GenerateImplOrientationAverage}.
*
*
* @author Peter Abeles
*/
public class ImplOrientationAverage_S16 extends OrientationAverage {
public ImplOrientationAverage_S16(double objectToSample,boolean weighted) {
super(objectToSample,weighted);
}
@Override
public Class getImageType() {
return GrayS16.class;
}
@Override
protected double computeUnweightedScore()
{
float sumX=0,sumY=0;
for( int y = rect.y0; y < rect.y1; y++ ) {
int indexX = derivX.startIndex + derivX.stride*y + rect.x0;
int indexY = derivY.startIndex + derivY.stride*y + rect.x0;
for( int x = rect.x0; x < rect.x1; x++ , indexX++ , indexY++ ) {
sumX += derivX.data[indexX];
sumY += derivY.data[indexY];
}
}
return Math.atan2(sumY,sumX);
}
@Override
protected double computeWeightedScore(int c_x, int c_y)
{
float sumX=0,sumY=0;
for( int y = rect.y0; y < rect.y1; y++ ) {
int indexX = derivX.startIndex + derivX.stride*y + rect.x0;
int indexY = derivY.startIndex + derivY.stride*y + rect.x0;
int indexW = (y-c_y+radiusScale)*weights.width + rect.x0-c_x+radiusScale;
for( int x = rect.x0; x < rect.x1; x++ , indexX++ , indexY++ , indexW++ ) {
float w = weights.data[indexW];
sumX += w * derivX.data[indexX];
sumY += w * derivY.data[indexY];
}
}
return Math.atan2(sumY,sumX);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy