boofcv.alg.segmentation.ms.SegmentMeanShiftSearchGray Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.segmentation.ms;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.feature.ColorQueue_F32;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import georegression.struct.point.Point2D_F32;
import georegression.struct.point.Point2D_I32;
import org.ddogleg.struct.FastQueue;
/**
*
* Implementation of {@link SegmentMeanShiftSearch} for gray-scale images
*
*
* @author Peter Abeles
*/
public class SegmentMeanShiftSearchGray> extends SegmentMeanShiftSearch {
// Interpolation routine used to get sub-pixel samples
protected InterpolatePixelS interpolate;
protected float meanGray;
// Mean-shift trajectory history
protected FastQueue history = new FastQueue<>(Point2D_F32.class, true);
public SegmentMeanShiftSearchGray(int maxIterations, float convergenceTol,
InterpolatePixelS interpolate,
int radiusX , int radiusY , float maxColorDistance,
boolean fast ) {
super(maxIterations,convergenceTol,radiusX,radiusY,maxColorDistance,fast);
this.interpolate = interpolate;
modeColor = new ColorQueue_F32(1);
}
/**
* Performs mean-shift clustering on the input image
*
* @param image Input image
*/
@Override
public void process( T image ) {
// initialize data structures
this.image = image;
this.stopRequested = false;
modeLocation.reset();
modeColor.reset();
modeMemberCount.reset();
interpolate.setImage(image);
pixelToMode.reshape(image.width, image.height);
quickMode.reshape(image.width, image.height);
// mark as -1 so it knows which pixels have been assigned a mode already and can skip them
ImageMiscOps.fill(pixelToMode, -1);
// mark all pixels are not being a mode
ImageMiscOps.fill(quickMode,-1);
// use mean shift to find the peak of each pixel in the image
int indexImg = 0;
for( int y = 0; y < image.height&& !stopRequested; y++ ) {
for( int x = 0; x < image.width; x++ , indexImg++) {
if( pixelToMode.data[indexImg] != -1 ) {
int peakIndex = pixelToMode.data[indexImg];
modeMemberCount.data[peakIndex]++;
continue;
}
float meanColor = interpolate.get(x, y);
findPeak(x,y, meanColor);
// convert mean-shift location into pixel index
int modeX = (int)(this.modeX +0.5f);
int modeY = (int)(this.modeY +0.5f);
int modePixelIndex = modeY*image.width + modeX;
// get index in the list of peaks
int modeIndex = quickMode.data[modePixelIndex];
// If the mode is new add it to the list
if( modeIndex < 0 ) {
modeIndex = this.modeLocation.size();
this.modeLocation.grow().set(modeX, modeY);
// Save the peak's color
modeColor.grow()[0] = meanGray;
// Mark the mode in the segment image
quickMode.data[modePixelIndex] = modeIndex;
// Set the initial count to zero. This will be incremented when it is traversed later on
modeMemberCount.add(0);
}
// add this pixel to the membership list
modeMemberCount.data[modeIndex]++;
// Add all pixels it traversed through to the membership of this mode
// This is an approximate of mean-shift
for( int i = 0; i < history.size; i++ ) {
Point2D_F32 p = history.get(i);
int px = (int)(p.x+0.5f);
int py = (int)(p.y+0.5f);
int index = pixelToMode.getIndex(px,py);
if( pixelToMode.data[index] == -1 ) {
pixelToMode.data[index] = modeIndex;
}
}
}
}
}
@Override
public ImageType getImageType() {
return interpolate.getImageType();
}
/**
* Uses mean-shift to find the peak. Returns the peak as an index in the image data array.
*
* @param gray The color value which mean-shift is trying to find a region which minimises it
*/
protected void findPeak( float cx , float cy , float gray ) {
history.reset();
history.grow().set(cx,cy);
for( int i = 0; i < maxIterations; i++ ) {
float total = 0;
float sumX = 0, sumY = 0, sumGray = 0;
int kernelIndex = 0;
float x0 = cx - radiusX;
float y0 = cy - radiusY;
// If it is not near the image border it can use faster techniques
if( interpolate.isInFastBounds(x0, y0) &&
interpolate.isInFastBounds(x0 + widthX - 1, y0 + widthY - 1)) {
for( int yy = 0; yy < widthY; yy++ ) {
for( int xx = 0; xx < widthX; xx++ ) {
float ds = spacialTable[kernelIndex++];
float pixelGray = interpolate.get_fast(x0 + xx, y0 + yy);
float dc = pixelGray - gray;
dc = dc*dc/maxColorDistanceSq;
float weight = dc > 1 ? 0 : weight((ds+dc)/2f);
total += weight;
sumX += weight*(xx+x0);
sumY += weight*(yy+y0);
sumGray += weight*pixelGray;
}
}
} else {
// Perform more sanity checks here for the image edge. Edge pixels are handled by skipping them
for( int yy = 0; yy < widthY; yy++ ) {
float sampleY = y0+yy;
// make sure it is inside the image
if( sampleY < 0 ) {
kernelIndex += widthX;
continue;
} else if( sampleY > image.height-1) {
break;
}
for( int xx = 0; xx < widthX; xx++ , kernelIndex++) {
float sampleX = x0+xx;
// make sure it is inside the image
if( sampleX < 0 || sampleX > image.width-1 ) {
continue;
}
float ds = spacialTable[kernelIndex];
float pixelGray = interpolate.get(x0 + xx, y0 + yy);
float dc = pixelGray - gray;
dc = dc*dc/maxColorDistanceSq;
float weight = dc > 1 ? 0 : weight((ds+dc)/2f);
total += weight;
sumX += weight*(xx+x0);
sumY += weight*(yy+y0);
sumGray += weight*pixelGray;
}
}
}
if( total == 0 )
break;
float peakX = sumX/total;
float peakY = sumY/total;
if( fast ) {
history.grow().set(peakX,peakY);
// see if it has already been here before
int px = (int)(peakX+0.5f);
int py = (int)(peakY+0.5f);
int index = pixelToMode.getIndex(px,py);
int modeIndex = pixelToMode.data[index];
if( modeIndex != -1 ) {
// it already knows the solution so stop searching
Point2D_I32 modeP = modeLocation.get(modeIndex);
this.modeX = modeP.x;
this.modeY = modeP.y;
return;
}
}
float dx = peakX-cx;
float dy = peakY-cy;
cx = peakX; cy = peakY;
gray = sumGray/total;
if( Math.abs(dx) < convergenceTol && Math.abs(dy) < convergenceTol ) {
break;
}
}
this.modeX = cx;
this.modeY = cy;
this.meanGray = gray;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy