boofcv.abst.feature.detect.line.DetectLineHoughPolar Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.feature.detect.line;
import boofcv.abst.feature.detect.extract.ConfigExtract;
import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.feature.detect.edge.GGradientToEdgeFeatures;
import boofcv.alg.feature.detect.line.HoughTransformLinePolar;
import boofcv.alg.feature.detect.line.ImageLinePruneMerge;
import boofcv.alg.filter.binary.ThresholdImageOps;
import boofcv.factory.feature.detect.extract.FactoryFeatureExtractor;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import georegression.struct.line.LineParametric2D_F32;
import org.ddogleg.struct.FastQueue;
import java.util.ArrayList;
import java.util.List;
/**
*
* Full processing chain for detecting lines using a Hough transform with polar parametrization.
*
*
*
* USAGE NOTES: Blurring the image prior to processing can often improve performance.
* Results will not be perfect and to detect all the obvious lines in the image several false
* positives might be returned.
*
*
* @see boofcv.alg.feature.detect.line.HoughTransformLinePolar
*
* @author Peter Abeles
*/
public class DetectLineHoughPolar, D extends ImageGray> implements DetectLine {
// transform algorithm
HoughTransformLinePolar alg;
// extractor used by hough transform
NonMaxSuppression extractor;
// computes image gradient
ImageGradient gradient;
// used to create binary edge image
float thresholdEdge;
// image gradient
D derivX;
D derivY;
// edge intensity image
GrayF32 intensity = new GrayF32(1,1);
// detected edge image
GrayU8 binary = new GrayU8(1,1);
GrayF32 suppressed = new GrayF32(1,1);
// GrayF32 angle = new GrayF32(1,1);
// ImageSInt8 direction = new ImageSInt8(1,1);
// angle tolerance for post processing pruning
float pruneAngleTol;
// range tolerance for post processing pruning
float pruneRangeTol;
// size of range bin in pixels
double resolutionRange;
// size of angle bin in radians
double resolutionAngle;
// radius for local max
int localMaxRadius;
// the maximum number of lines it will return
int maxLines;
// post processing pruning
ImageLinePruneMerge post = new ImageLinePruneMerge();
/**
* Configures hough line detector.
*
* @param localMaxRadius Radius for local maximum suppression. Try 2.
* @param minCounts Minimum number of counts for detected line. Critical tuning parameter and image dependent.
* @param resolutionRange Resolution of line range in pixels. Try 2
* @param resolutionAngle Resolution of line angle in radius. Try PI/180
* @param thresholdEdge Edge detection threshold. Try 50.
* @param maxLines Maximum number of lines to return. If ≤ 0 it will return them all.
* @param gradient Algorithm for computing image gradient.
*/
public DetectLineHoughPolar(int localMaxRadius,
int minCounts,
double resolutionRange ,
double resolutionAngle ,
float thresholdEdge,
int maxLines ,
ImageGradient gradient)
{
pruneAngleTol = (float)((localMaxRadius+1)*resolutionAngle);
pruneRangeTol = (float)((localMaxRadius+1)*resolutionRange);
this.localMaxRadius = localMaxRadius;
this.gradient = gradient;
this.thresholdEdge = thresholdEdge;
this.resolutionRange = resolutionRange;
this.resolutionAngle = resolutionAngle;
this.maxLines = maxLines <= 0 ? Integer.MAX_VALUE : maxLines;
extractor = FactoryFeatureExtractor.nonmax(new ConfigExtract(localMaxRadius, minCounts, 0, false));
derivX = gradient.getDerivativeType().createImage(1, 1);
derivY = gradient.getDerivativeType().createImage(1, 1);
}
@Override
public List detect(I input) {
// see if the input image shape has changed.
if( derivX.width != input.width || derivY.height != input.height ) {
double r = Math.sqrt(input.width*input.width + input.height*input.height);
int numBinsRange = (int)Math.ceil(r/resolutionRange);
int numBinsAngle = (int)Math.ceil(Math.PI/resolutionAngle);
alg = new HoughTransformLinePolar(extractor,numBinsRange,numBinsAngle);
derivX.reshape(input.width,input.height);
derivY.reshape(input.width,input.height);
intensity.reshape(input.width,input.height);
binary.reshape(input.width, input.height);
// angle.reshape(input.width, input.height);
// direction.reshape(input.width, input.height);
suppressed.reshape(input.width, input.height);
}
gradient.process(input, derivX, derivY);
GGradientToEdgeFeatures.intensityAbs(derivX, derivY, intensity);
// non-max suppression reduces the number of line pixels, reducing the number of false positives
// When too many pixels are flagged, then more curves randomly cross over in transform space causing
// false positives
// GGradientToEdgeFeatures.direction(derivX, derivY, angle);
// GradientToEdgeFeatures.discretizeDirection4(angle, direction);
// GradientToEdgeFeatures.nonMaxSuppression4(intensity,direction, suppressed);
GGradientToEdgeFeatures.nonMaxSuppressionCrude4(intensity,derivX,derivY,suppressed);
ThresholdImageOps.threshold(suppressed, binary, thresholdEdge, false);
alg.transform(binary);
FastQueue lines = alg.extractLines();
List ret = new ArrayList<>();
for( int i = 0; i < lines.size; i++ )
ret.add(lines.get(i));
ret = pruneLines(input, ret);
return ret;
}
private List pruneLines(I input, List ret) {
float intensity[] = alg.getFoundIntensity();
post.reset();
for( int i = 0; i < ret.size(); i++ ) {
post.add(ret.get(i),intensity[i]);
}
post.pruneSimilar(pruneAngleTol, pruneRangeTol, input.width, input.height);
post.pruneNBest(maxLines);
return post.createList();
}
public HoughTransformLinePolar getTransform() {
return alg;
}
public D getDerivX() {
return derivX;
}
public D getDerivY() {
return derivY;
}
public GrayF32 getEdgeIntensity() {
return intensity;
}
public GrayU8 getBinary() {
return binary;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy