boofcv.alg.background.stationary.BackgroundStationaryGaussian_PL Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.stationary;
import boofcv.alg.InputSanityCheck;
import boofcv.alg.misc.GImageMiscOps;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.core.image.FactoryGImageMultiBand;
import boofcv.core.image.GConvertImage;
import boofcv.core.image.GImageMultiBand;
import boofcv.struct.image.*;
/**
* Implementation of {@link BackgroundStationaryGaussian} for {@link Planar}.
*
* @author Peter Abeles
*/
public class BackgroundStationaryGaussian_PL>
extends BackgroundStationaryGaussian>
{
// wrappers which provide abstraction across image types
protected GImageMultiBand inputWrapper;
protected GImageMultiBand bgWrapper;
// storage for multi-band pixel values
protected float[] inputPixel;
// background is composed of bands*2 channels. even = mean, odd = variance
Planar background;
/**
* Configurations background removal.
*
* @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05
* @param threshold Threshold for background. Consult a chi-square table for reasonably values.
* 10 to 16 for 1 to 3 bands.
* @param imageType Type of input image.
*/
public BackgroundStationaryGaussian_PL(float learnRate, float threshold,
ImageType> imageType)
{
super(learnRate, threshold, imageType);
int numBands = imageType.getNumBands();
background = new Planar<>(GrayF32.class,1,1,2*numBands);
bgWrapper = FactoryGImageMultiBand.create(background.getImageType());
bgWrapper.wrap(background);
inputWrapper = FactoryGImageMultiBand.create(imageType);
inputPixel = new float[numBands];
}
@Override
public void reset() {
background.reshape(1,1);
}
@Override
public void updateBackground( Planar frame) {
if( background.width == 1 ) {
background.reshape(frame.width, frame.height);
// initialize the mean to the current image and the initial variance is whatever it is set to
for (int band = 0; band < background.getNumBands(); band += 2) {
GConvertImage.convert(frame.getBand(band / 2), background.getBand(band));
GImageMiscOps.fill(background.getBand(band + 1), initialVariance);
}
return;
} else {
InputSanityCheck.checkSameShape(background, frame);
}
inputWrapper.wrap(frame);
int numBands = background.getNumBands()/2;
float minusLearn = 1.0f - learnRate;
int indexBG = 0;
for (int y = 0; y < background.height; y++) {
int indexInput = frame.startIndex + y*frame.stride;
int end = indexInput + frame.width;
while( indexInput < end ) {
inputWrapper.getF(indexInput, inputPixel);
for (int band = 0; band < numBands; band++) {
GrayF32 backgroundMean = background.getBand(band*2);
GrayF32 backgroundVar = background.getBand(band*2+1);
float inputValue = inputPixel[band];
float meanBG = backgroundMean.data[indexBG];
float varianceBG = backgroundVar.data[indexBG];
float diff = meanBG-inputValue;
backgroundMean.data[indexBG] = minusLearn*meanBG + learnRate*inputValue;
backgroundVar.data[indexBG] = minusLearn*varianceBG + learnRate*diff*diff;
}
indexInput++;
indexBG++;
}
}
}
@Override
public void segment(Planar frame, GrayU8 segmented) {
if( background.width == 1 ) {
ImageMiscOps.fill(segmented, unknownValue);
return;
}
inputWrapper.wrap(frame);
final int numBands = background.getNumBands()/2;
float adjustedMinimumDifference = minimumDifference*numBands;
int indexBG = 0;
for (int y = 0; y < frame.height; y++) {
int indexInput = frame.startIndex + y*frame.stride;
int indexSegmented = segmented.startIndex + y*segmented.stride;
int end = indexInput + frame.width;
while( indexInput < end ) {
inputWrapper.getF(indexInput, inputPixel);
float mahalanobis = 0;
for (int band = 0; band < numBands; band++) {
GrayF32 backgroundMean = background.getBand(band*2);
GrayF32 backgroundVar = background.getBand(band*2+1);
float meanBG = backgroundMean.data[indexBG];
float varBG = backgroundVar.data[indexBG];
float diff = meanBG - inputPixel[band];
mahalanobis += diff * diff / varBG;
}
if (mahalanobis <= threshold) {
segmented.data[indexSegmented] = 0;
} else {
if( minimumDifference == 0) {
segmented.data[indexSegmented] = 1;
} else {
float sumAbsDiff = 0;
for (int band = 0; band < numBands; band++) {
GrayF32 backgroundMean = background.getBand(band*2);
sumAbsDiff += Math.abs(backgroundMean.data[indexBG] - inputPixel[band]);
}
if (sumAbsDiff >= adjustedMinimumDifference)
segmented.data[indexSegmented] = 1;
else
segmented.data[indexSegmented] = 0;
}
}
indexInput++;
indexSegmented++;
indexBG++;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy