All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.associate.AssociateGreedy Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.associate;

import boofcv.abst.feature.associate.ScoreAssociation;
import boofcv.struct.feature.TupleDesc_F64;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F64;
import org.ddogleg.struct.GrowQueue_I32;


/**
 * 

* Brute force greedy association for objects described by a {@link TupleDesc_F64}. An * object is associated with whichever object has the best fit score and every possible combination * is examined. If there are a large number of features this can be quite slow. *

* *

* Optionally, backwards validation can be used to reduce the number of false associations. * Backwards validation works by checking to see if two objects are mutually the best association * for each other. First an association is found from src to dst, then the best fit in dst is * associated with feature in src. *

* * @param Feature description type. * * @author Peter Abeles */ public class AssociateGreedy { // computes association score private ScoreAssociation score; // worst allowed fit score to associate private double maxFitError = Double.MAX_VALUE; // stores the quality of fit score private GrowQueue_F64 fitQuality = new GrowQueue_F64(100); // stores indexes of associated private GrowQueue_I32 pairs = new GrowQueue_I32(100); // various private GrowQueue_F64 workBuffer = new GrowQueue_F64(100); // if true backwardsValidation is done private boolean backwardsValidation; /** * Configure association * * @param score Computes the association score. * @param backwardsValidation If true then backwards validation is performed. */ public AssociateGreedy(ScoreAssociation score, boolean backwardsValidation) { this.score = score; this.backwardsValidation = backwardsValidation; } /** * Associates the two sets objects against each other by minimizing fit score. * * @param src Source list. * @param dst Destination list. */ public void associate( FastQueue src , FastQueue dst ) { fitQuality.reset(); pairs.reset(); workBuffer.reset(); // System.out.println("Associate: "+src.size+"*"+dst.size+" = "+(src.size*dst.size)+" or "+(src.size*dst.size*8/1024/1024)+"MB"); fitQuality.setMaxSize(src.size); workBuffer.setMaxSize(src.size*dst.size); for( int i = 0; i < src.size; i++ ) { D a = src.data[i]; double bestScore = maxFitError; int bestIndex = -1; for( int j = 0; j < dst.size; j++ ) { D b = dst.data[j]; double fit = score.score(a,b); workBuffer.push(fit); if( fit <= bestScore ) { bestIndex = j; bestScore = fit; } } pairs.push(bestIndex); fitQuality.push(bestScore); } if( backwardsValidation ) { for( int i = 0; i < src.size; i++ ) { int match = pairs.data[i]; if( match == -1 ) continue; double scoreToBeat = workBuffer.data[i*dst.size+match]; for( int j = 0; j < src.size; j++ , match += dst.size ) { if( workBuffer.data[match] <= scoreToBeat && j != i) { pairs.data[i] = -1; fitQuality.data[i] = Double.MAX_VALUE; break; } } } } } /** * Returns a list of association pairs. Each element in the returned list corresponds * to an element in the src list. The value contained in the index indicate which element * in the dst list that object was associated with. If a value of -1 is stored then * no association was found. * * @return Array containing associations by src index. */ public int[] getPairs() { return pairs.data; } /** * Quality of fit scores for each association. Lower fit scores are better. * * @return Array of fit sources by src index. */ public double[] getFitQuality() { return fitQuality.data; } public void setMaxFitError(double maxFitError) { this.maxFitError = maxFitError; } public ScoreAssociation getScore() { return score; } public boolean isBackwardsValidation() { return backwardsValidation; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy