All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.associate.AssociateNearestNeighbor Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.associate;

import boofcv.abst.feature.associate.AssociateDescription;
import boofcv.struct.feature.AssociatedIndex;
import boofcv.struct.feature.MatchScoreType;
import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.nn.NnData;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_I32;

import java.util.List;

/**
 * 

Matches features using a {@link NearestNeighbor} search from DDogleg. The source features are processed * as a lump using {@link NearestNeighbor#setPoints(java.util.List, boolean)} while destination features * are matched one at time using {@link NearestNeighbor#findNearest(Object, double, org.ddogleg.nn.NnData)}. * Typically the processing of source features is more expensive and should be minimized while looking up * destination features is fast. Multiple matches for source features are possible while there will only * be a unique match for each destination feature.

* *

An optional ratio test inspired from [1] can be used. The ratio between the best and second best score is found. * if the difference is significant enough then the match is accepted. This this is a ratio test, knowing if the score * is squared is important. Please set the flag correctly. Almost always the score is Euclidean distance squared.

* *

[1] Lowe, David G. "Distinctive image features from scale-invariant keypoints." * International journal of computer vision 60.2 (2004): 91-110.

* * @author Peter Abeles */ public class AssociateNearestNeighbor implements AssociateDescription { // Nearest Neighbor algorithm and storage for the results private NearestNeighbor alg; private NnData result = new NnData<>(); private FastQueue> result2 = new FastQueue(NnData.class,true); // list of features in destination set that are to be searched for in the source list private FastQueue listDst; int sizeSrc; // should the square root of the distance be used instead of the actual distance boolean ratioUsesSqrt =true; // A match is only accepted if the score of the second match over the best match is less than this value double scoreRatioThreshold =1.0; // List of final associated points private FastQueue matches = new FastQueue<>(100, AssociatedIndex.class, true); // creates a list of unassociated features from the list of matches private FindUnassociated unassociated = new FindUnassociated(); // maximum distance away two points can be private double maxDistance = -1; public AssociateNearestNeighbor(NearestNeighbor alg) { this.alg = alg; } @Override public void setSource(FastQueue listSrc) { this.sizeSrc = listSrc.size; alg.setPoints((List)listSrc.toList(),true); } @Override public void setDestination(FastQueue listDst) { this.listDst = listDst; } @Override public void associate() { matches.resize(listDst.size); matches.reset(); if( scoreRatioThreshold >= 1.0 ) { // if score ratio is not turned on then just use the best match for (int i = 0; i < listDst.size; i++) { if (!alg.findNearest(listDst.data[i], maxDistance, result)) continue; matches.grow().setAssociation(result.index, i, result.distance); } } else { for (int i = 0; i < listDst.size; i++) { alg.findNearest(listDst.data[i], maxDistance,2, result2); if( result2.size == 1 ) { NnData r = result2.getTail(); matches.grow().setAssociation(r.index, i, r.distance); } else if( result2.size == 2 ) { NnData r0 = result2.get(0); NnData r1 = result2.get(1); // ensure that r0 is the closest if( r0.distance > r1.distance ) { NnData tmp = r0; r0 = r1; r1 = tmp; } double foundRatio = ratioUsesSqrt ?Math.sqrt(r0.distance)/Math.sqrt(r1.distance) :r0.distance/r1.distance; if( foundRatio <= scoreRatioThreshold) { matches.grow().setAssociation(r0.index, i, r0.distance); } } else if( result2.size != 0 ){ throw new RuntimeException("BUG! 0,1,2 are acceptable not "+result2.size); } } } } @Override public FastQueue getMatches() { return matches; } @Override public GrowQueue_I32 getUnassociatedSource() { return unassociated.checkSource(matches,sizeSrc); } @Override public GrowQueue_I32 getUnassociatedDestination() { return unassociated.checkDestination(matches,listDst.size()); } @Override public void setMaxScoreThreshold(double score) { this.maxDistance = score; } @Override public MatchScoreType getScoreType() { return MatchScoreType.NORM_ERROR; } @Override public boolean uniqueSource() { return false; } @Override public boolean uniqueDestination() { return true; } public boolean isRatioUsesSqrt() { return ratioUsesSqrt; } public void setRatioUsesSqrt(boolean ratioUsesSqrt) { this.ratioUsesSqrt = ratioUsesSqrt; } public double getScoreRatioThreshold() { return scoreRatioThreshold; } public void setScoreRatioThreshold(double scoreRatioThreshold) { this.scoreRatioThreshold = scoreRatioThreshold; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy