boofcv.alg.feature.describe.SurfDescribeOps Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.describe;
import boofcv.alg.feature.describe.impl.ImplSurfDescribeOps;
import boofcv.factory.transform.ii.FactorySparseIntegralFilters;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayS32;
import boofcv.struct.image.ImageGray;
import boofcv.struct.sparse.SparseScaleGradient;
/**
* Operations related to computing SURF descriptors.
*
* @author Peter Abeles
*/
public class SurfDescribeOps {
/**
*
* Computes the of a square region. The region considered has a radius
* of ceil(radius*s) pixels. The derivative is computed every 's' pixels.
*
*
*
* Deviation from paper:
*
* - An symmetric box derivative is used instead of the Haar wavelet.
*
*
*
* @param tl_x Top left corner.
* @param tl_y Top left corner.
* @param samplePeriod Distance between sample points (in pixels)
* @param regionSize Width of region being considered in samples points (not pixels).
* @param kernelWidth Size of the kernel's width (in pixels) .
* @param useHaar
* @param derivX Derivative x wavelet output. length = radiusRegions*radiusRegions
* @param derivY Derivative y wavelet output. length = radiusRegions*radiusRegions
*/
public static >
void gradient(T ii, double tl_x, double tl_y, double samplePeriod ,
int regionSize, double kernelWidth,
boolean useHaar, double[] derivX, double derivY[])
{
ImplSurfDescribeOps.naiveGradient(ii, tl_x, tl_y, samplePeriod , regionSize, kernelWidth, useHaar, derivX, derivY);
}
/**
* Faster version of {@link #gradient} which assumes the region is entirely contained inside the
* of the image. This includes the convolution kernel's radius.
*/
public static
void gradient_noborder(GrayF32 ii , double tl_x , double tl_y , double samplePeriod ,
int regionSize , double kernelWidth ,
float[] derivX , float[] derivY )
{
ImplSurfDescribeOps.gradientInner(ii,tl_x,tl_y,samplePeriod,regionSize, kernelWidth, derivX,derivY);
}
/**
* Faster version of {@link #gradient} which assumes the region is entirely contained inside the
* of the image. This includes the convolution kernel's radius.
*/
public static
void gradient_noborder(GrayS32 ii , double tl_x , double tl_y , double samplePeriod ,
int regionSize , double kernelWidth ,
int[] derivX , int[] derivY )
{
ImplSurfDescribeOps.gradientInner(ii,tl_x,tl_y,samplePeriod, regionSize, kernelWidth, derivX,derivY);
}
/**
* Creates a class for computing the image gradient from an integral image in a sparse fashion.
* All these kernels assume that the kernel is entirely contained inside the image!
*
* @param useHaar Should it use a haar wavelet or an derivative kernel.
* @param imageType Type of image being processed.
* @return Sparse gradient algorithm
*/
public static >
SparseScaleGradient createGradient( boolean useHaar , Class imageType )
{
if( useHaar )
return FactorySparseIntegralFilters.haar(imageType);
else
return FactorySparseIntegralFilters.gradient(imageType);
}
/**
* Checks to see if the region is contained inside the image. This includes convolution
* kernel. Take in account the orientation of the region.
*
* @param X Center of the interest point.
* @param Y Center of the interest point.
* @param radiusRegions Radius in pixels of the whole region at a scale of 1
* @param kernelSize Size of the kernel in pixels at a scale of 1
* @param scale Scale factor for the region.
* @param c Cosine of the orientation
* @param s Sine of the orientation
*/
public static >
boolean isInside( T ii , double X , double Y , int radiusRegions , int kernelSize ,
double scale, double c , double s )
{
int c_x = (int)Math.round(X);
int c_y = (int)Math.round(Y);
kernelSize = (int)Math.ceil(kernelSize*scale);
int kernelRadius = kernelSize/2+(kernelSize%2);
// find the radius of the whole area being sampled
int radius = (int)Math.ceil(radiusRegions*scale);
// integral image convolutions sample the pixel before the region starts
// which is why the extra minus one is there
int kernelPaddingMinus = radius+kernelRadius+1;
int kernelPaddingPlus = radius+kernelRadius;
// take in account the rotation
if( c != 0 || s != 0) {
double xx = Math.abs(c*kernelPaddingMinus - s*kernelPaddingMinus);
double yy = Math.abs(s*kernelPaddingMinus + c*kernelPaddingMinus);
double delta = xx>yy? xx - kernelPaddingMinus : yy - kernelPaddingMinus;
kernelPaddingMinus += (int)Math.ceil(delta);
kernelPaddingPlus += (int)Math.ceil(delta);
}
// compute the new bounds and see if its inside
int x0 = c_x-kernelPaddingMinus;
if( x0 < 0 ) return false;
int x1 = c_x+kernelPaddingPlus;
if( x1 >= ii.width ) return false;
int y0 = c_y-kernelPaddingMinus;
if( y0 < 0 ) return false;
int y1 = c_y+kernelPaddingPlus;
if( y1 >= ii.height) return false;
return true;
}
/**
*
* Tests to see if the rectangular region being sampled is contained inside the image. Sampling
* is done using a square region with the specified size, where size corresponds to the length
* of each side. The sample region's size is discretized and rounded up, making this a conservative
* estimate for containment.
*
*
* This takes in account how integral images are read. To read in a rectangular region the pixel
* below the lower left corner is read, which results in an extra minus along enough axis for the
* lower bound. It is also assumed that points are discretized by rounding.
*
*
*
* @param width Image's width.
* @param height Image's height.
* @param tl_x Top left corner of region being sampled.
* @param tl_y Top left corner of region being sampled.
* @param regionSize Size of the region being sampled.
* @param sampleSize Length of each side in the sample region. See comment above.
* @return If all samples are contained inside the image.
*/
public static boolean isInside( int width , int height,
double tl_x , double tl_y ,
double regionSize , double sampleSize )
{
int w = (int)(sampleSize+0.5);
int r = w/2 + w%2; // be conservative and round up
// the extra minus one is because integral images are being used
int x0 = (int)(tl_x+0.5) - r - 1;
int y0 = (int)(tl_y+0.5) - r - 1;
if( x0 < 0 || y0 < 0)
return false;
int x1 = (int)(tl_x+regionSize+0.5) + r;
int y1 = (int)(tl_y+regionSize+0.5) + r;
if( x1 >= width || y1 >= height )
return false;
return true;
}
/**
* Computes the width of a square containment region that contains a rotated rectangle.
*
* @param width Size of the original rectangle.
* @param c Cosine(theta)
* @param s Sine(theta)
* @return Side length of the containment square.
*/
public static double rotatedWidth( double width , double c , double s )
{
return Math.abs(c)*width + Math.abs(s)*width;
}
}