boofcv.alg.feature.detect.interest.FastHessianFeatureDetector Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.interest;
import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.alg.feature.detect.extract.SelectNBestFeatures;
import boofcv.alg.feature.detect.intensity.GIntegralImageFeatureIntensity;
import boofcv.core.image.border.FactoryImageBorderAlgs;
import boofcv.struct.QueueCorner;
import boofcv.struct.border.ImageBorder_F32;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.struct.FastQueue;
import java.util.List;
/**
*
* The Fast Hessian (FH) [1] interest point detector is designed to be a fast multi-scale "blob" detector. FH
* is intended for use as a feature detector for SURF [1]. It works by computing an approximation of the
* image Hessian's determinant using "box-lets" type features. Unlike traditional scale-space algorithms
* the feature itself is rescaled and is efficiently computed using an {@link boofcv.alg.transform.ii.IntegralImageOps integral image}.
*
*
*
* This class is intended to be a faithful implementation of the algorithm described in [1]. Deviations
* from that paper are noted in the code an in the comments below. This detector can be used to implement
* the FH-9 and FH-15 detectors. For the FH-15 detector the input image needs to be doubled in size prior
* to processing and the feature location rescaled.
*
*
*
* Description of scale space approach, see [1] for a more detailed and complete description. Features are detected in
* a series of octaves. Each octave is defined as a set of scales where higher octaves contain larger scales.
* A scale is defined by a feature's size in pixels, the size is the feature's width/height. Improved accuracy in done
* by interpolating feature location in pixel coordinates and scale.
*
*
*
* For example, the FH-9 detector has 4 octaves with the following detector sizes:
* Octave 1: Sizes = 9,15,21,27
* Octave 2: Sizes = 15,27,39,51
* Octave 3: Sizes = 27,51,75,99
* Octave 4: Sizes = 51,99,147,195
*
*
*
* Features are only detected for sizes which have a size smaller and larger. For the first octave in the example
* above that would be for sizes 15 and 21. Sizes 9 and 27 are only used to identify local maximums in scale space.
*
*
*
* Note: Interpolation is performed by fitting a second order polynomial instead of a quadratic, as
* suggested in the paper. See comments in {@link #polyPeak(float, float, float)}.
*
*
*
* [1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "Speeded-Up Robust Features (SURF)",
* CVIU June, 2008, Volume 110, Issue 3, pages 346-359
*
*
* @see boofcv.factory.feature.detect.interest.FactoryInterestPoint
*
* @author Peter Abeles
*/
public class FastHessianFeatureDetector> {
// finds features from 2D intensity image
private NonMaxSuppression extractor;
// sorts feature by their intensity
private SelectNBestFeatures sortBest;
// the maximum number of returned feature per scale
private int maxFeaturesPerScale;
// local sub-space
private GrayF32 intensity[];
private int spaceIndex = 0;
private QueueCorner foundFeatures = new QueueCorner(100);
// List of found feature points
private FastQueue foundPoints = new FastQueue<>(10, ScalePoint.class, true);
// size of detected feature at the smallest scale
private int initialSize;
// increment between kernel sizes as it goes up in scale
private int scaleStepSize;
// the number of octaves it examines
private int numberOfOctaves;
// local variables that are predeclared
private int sizes[];
// how often the image is sampled in the first octave
// a value of 1 would mean every pixel is sampled
private int initialSampleRate;
/**
*
* Defines the feature detector by specifying the size of features.
*
*
* Configuration for FH-9: initialSampleSize=1, initialSize=9, numberScalesPerOctave=4, numberOfOctaves=4
* Configuration for FH-15: initialSampleSize=1, initialSize=15, numberScalesPerOctave=5, numberOfOctaves=4
* * Note that FH-15 requires the image to be up sampled first. See [1] for details.
*
* @param extractor Feature extractor used to find local maximums in 2D image.
* @param maxFeaturesPerScale Maximum number of features it can find per image scale. If set ≤ 0 then the all potential
* features will be returned, which is how it is in the original paper.
* @param initialSampleRate How often pixels are sampled in the first octave.
* @param initialSize Size/width of the smallest feature/kernel in the lowest octave.
* @param numberScalesPerOctave How many different feature sizes are considered in a single octave
* @param numberOfOctaves How many different octaves are considered.
* @param scaleStepSize Increment between kernel sizes as it goes up in scale. Try 6
*/
public FastHessianFeatureDetector(NonMaxSuppression extractor, int maxFeaturesPerScale,
int initialSampleRate, int initialSize,
int numberScalesPerOctave,
int numberOfOctaves, int scaleStepSize) {
this.extractor = extractor;
if( maxFeaturesPerScale > 0 ) {
this.maxFeaturesPerScale = maxFeaturesPerScale;
sortBest = new SelectNBestFeatures(maxFeaturesPerScale);
}
this.initialSampleRate = initialSampleRate;
this.initialSize = initialSize;
this.numberOfOctaves = numberOfOctaves;
this.scaleStepSize = scaleStepSize;
sizes = new int[ numberScalesPerOctave ];
}
/**
* Detect interest points inside of the image.
*
* @param integral Image transformed into an integral image.
*/
public void detect( II integral ) {
if( intensity == null ) {
intensity = new GrayF32[3];
for( int i = 0; i < intensity.length; i++ ) {
intensity[i] = new GrayF32(integral.width,integral.height);
}
}
foundPoints.reset();
// computes feature intensity every 'skip' pixels
int skip = initialSampleRate;
// increment between kernel sizes
int sizeStep = scaleStepSize;
// initial size of the kernel in the first octave
int octaveSize = initialSize;
for( int octave = 0; octave < numberOfOctaves; octave++ ) {
for( int i = 0; i < sizes.length; i++ ) {
sizes[i] = octaveSize + i*sizeStep;
}
// if the maximum kernel size is larger than the image don't process
// the image any more
int maxSize = sizes[sizes.length-1];
if( maxSize > integral.width || maxSize > integral.height )
break;
// detect features inside of this octave
detectOctave(integral,skip,sizes);
skip += skip;
octaveSize += sizeStep;
sizeStep += sizeStep;
}
// todo save previously computed sizes for reuse in higher octaves and reuse it
}
/**
* Computes feature intensities for all the specified feature sizes and finds features
* inside of the middle feature sizes.
*
* @param integral Integral image.
* @param skip Pixel skip factor
* @param featureSize which feature sizes should be detected.
*/
protected void detectOctave( II integral , int skip , int ...featureSize ) {
int w = integral.width/skip;
int h = integral.height/skip;
// resize the output intensity image taking in account subsampling
for( int i = 0; i < intensity.length; i++ ) {
intensity[i].reshape(w,h);
}
// compute feature intensity in each level
for( int i = 0; i < featureSize.length; i++ ) {
GIntegralImageFeatureIntensity.hessian(integral,skip,featureSize[i],intensity[spaceIndex]);
spaceIndex++;
if( spaceIndex >= 3 )
spaceIndex = 0;
// find maximum in scale space
if( i >= 2 ) {
findLocalScaleSpaceMax(featureSize,i-1,skip);
}
}
}
/**
* Looks for features which are local maximums in the image and scale-space.
*
* @param size Size of features in different scale-spaces.
* @param level Which level in the scale-space
* @param skip How many pixels are skipped over.
*/
private void findLocalScaleSpaceMax(int []size, int level, int skip) {
int index0 = spaceIndex;
int index1 = (spaceIndex + 1) % 3;
int index2 = (spaceIndex + 2) % 3;
ImageBorder_F32 inten0 = (ImageBorder_F32)FactoryImageBorderAlgs.value(intensity[index0], 0);
GrayF32 inten1 = intensity[index1];
ImageBorder_F32 inten2 = (ImageBorder_F32)FactoryImageBorderAlgs.value(intensity[index2], 0);
// find local maximums in image 2D space. Borders need to be ignored since
// false positives are found around them as an artifact of pixels outside being
// treated as being zero.
foundFeatures.reset();
extractor.setIgnoreBorder(size[level] / (2 * skip));
extractor.process(intensity[index1],null,null,null,foundFeatures);
// Can't consider feature which are right up against the border since they might not be a true local
// maximum when you consider the features on the other side of the ignore border
int ignoreRadius = extractor.getIgnoreBorder() + extractor.getSearchRadius();
int ignoreWidth = intensity[index1].width-ignoreRadius;
int ignoreHeight = intensity[index1].height-ignoreRadius;
// number of features which can be added
int numberRemaining;
// if configured to do so, only select the features with the highest intensity
QueueCorner features;
if( sortBest != null ) {
sortBest.process(intensity[index1],foundFeatures,true);
features = sortBest.getBestCorners();
numberRemaining = maxFeaturesPerScale;
} else {
features = foundFeatures;
numberRemaining = Integer.MAX_VALUE;
}
int levelSize = size[level];
int sizeStep = levelSize-size[level-1];
// see if these local maximums are also a maximum in scale-space
for( int i = 0; i < features.size && numberRemaining > 0; i++ ) {
Point2D_I16 f = features.get(i);
// avoid false positives. see above comment
if( f.x < ignoreRadius || f.x >= ignoreWidth || f.y < ignoreRadius || f.y >= ignoreHeight )
continue;
float val = inten1.get(f.x,f.y);
// see if it is a max in scale-space too
if( checkMax(inten0,val,f.x,f.y) && checkMax(inten2,val,f.x,f.y) ) {
// find the feature's location to sub-pixel accuracy using a second order polynomial
// NOTE: In the original paper this was done using a quadratic. See comments above.
// NOTE: Using a 2D polynomial for x and y might produce better results.
float peakX = polyPeak(inten1.get(f.x-1,f.y),inten1.get(f.x,f.y),inten1.get(f.x+1,f.y));
float peakY = polyPeak(inten1.get(f.x,f.y-1),inten1.get(f.x,f.y),inten1.get(f.x,f.y+1));
float peakS = polyPeak(inten0.get(f.x,f.y),inten1.get(f.x,f.y),inten2.get(f.x,f.y));
float interpX = (f.x+peakX)*skip;
float interpY = (f.y+peakY)*skip;
float interpS = levelSize+peakS*sizeStep;
double scale = 1.2*interpS/9.0;
foundPoints.grow().set(interpX,interpY,scale);
numberRemaining--;
}
}
}
/**
* Sees if the best score in the current layer is greater than all the scores in a 3x3 neighborhood
* in another layer.
*/
protected static boolean checkMax(ImageBorder_F32 inten, float bestScore, int c_x, int c_y) {
for( int y = c_y -1; y <= c_y+1; y++ ) {
for( int x = c_x-1; x <= c_x+1; x++ ) {
if( inten.get(x,y) >= bestScore ) {
return false;
}
}
}
return true;
}
/**
*
* Fits a second order polynomial to the data and determines the location of the peak.
*
* y = a*x2+b*x + c
* x = {-1,0,1}
* y = Feature value
*
*
*
* Note: The original paper fit a 3D Quadratic to the data instead. This required the first
* and second derivative of the Laplacian to be estimated. Such estimates are error prone
* and using the technique found in OpenSURF produced erratic results and required some hackery
* to get to work. This should always produce stable results and is much faster.
*
*
* @param lower Value at x=-1
* @param middle Value at x=0
* @param upper Value at x=1
* @return x-coordinate of the peak
*/
public static float polyPeak( float lower , float middle , float upper )
{
// if( lower >= middle || upper >= middle )
// throw new IllegalArgumentException("Crap");
// only need two coefficients to compute the peak's location
float a = 0.5f*lower - middle + 0.5f*upper;
float b = 0.5f*upper - 0.5f*lower;
return -b/(2.0f*a);
}
public static double polyPeak( double lower , double middle , double upper )
{
// if( lower >= middle || upper >= middle )
// throw new IllegalArgumentException("Crap");
// only need two coefficients to compute the peak's location
double a = 0.5*lower - middle + 0.5*upper;
double b = 0.5*upper - 0.5*lower;
return -b/(2.0*a);
}
public static double polyPeak( double lower , double middle , double upper,
double lowerVal , double middleVal , double upperVal )
{
double offset = polyPeak(lower,middle,upper);
if( offset < 0 ) {
return -lowerVal*offset + (1.0+offset)*middle;
} else {
return upperVal*offset + offset*middle;
}
}
/**
* Returns all the found interest points.
*
* @return Found interest points.
*/
public List getFoundPoints() {
return foundPoints.toList();
}
/**
* Returns the width of the smallest feature it can detect
*/
public int getSmallestWidth() {
return initialSize;
}
}