All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.interest.FeaturePyramid Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.interest;

import boofcv.abst.feature.detect.interest.InterestPointScaleSpacePyramid;
import boofcv.abst.filter.derivative.AnyImageDerivative;
import boofcv.core.image.border.FactoryImageBorderAlgs;
import boofcv.struct.QueueCorner;
import boofcv.struct.border.ImageBorder_F32;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.PyramidFloat;
import georegression.struct.point.Point2D_I16;

import java.util.ArrayList;
import java.util.List;

/**
 * 

* Detects scale invariant interest/corner points by computing the feature intensities across a pyramid of different scales. * Features which are maximums with in a local 2D neighborhood and within the local scale neighbourhood are declared to * be features. Maximums are checked for in scale space by comparing the feature intensity against features in the * upper and lower layers. *

*

*

* NOTE: Features are not computed for the bottom and top most layers in the pyramid.
* NOTE: See discussion of scalePower inside of {@link FeatureLaplacePyramid}. *

*

*

* [1] Krystian Mikolajczyk and Cordelia Schmid, "Indexing based on scale invariant interest points" ICCV 2001. Proceedings.
* [2] Lindeberg, T., "Feature detection with automatic scale selection." IJCV 30(2) (1998) 79 – 116 *

* * @author Peter Abeles * @see boofcv.factory.feature.detect.interest.FactoryInterestPoint */ @SuppressWarnings({"unchecked"}) public class FeaturePyramid, D extends ImageGray> implements InterestPointScaleSpacePyramid { // generalized feature detector. Used to find candidate features in each scale's image private GeneralFeatureDetector detector; private float baseThreshold; // feature intensity in the pyramid protected GrayF32 intensities[]; protected int spaceIndex = 0; protected List maximums[]; // List of found feature points protected List foundPoints = new ArrayList<>(); protected AnyImageDerivative computeDerivative; // how much the feature intensity is scaled in each level // varies depending on feature type protected double scalePower; /** * Create a feature detector. * * @param detector Point feature detector which is used to find candidates in each scale level * @param scalePower Used to normalize feature intensity at different scales. For many features this should be one. */ public FeaturePyramid(GeneralFeatureDetector detector, AnyImageDerivative computeDerivative, double scalePower) { this.detector = detector; this.baseThreshold = detector.getThreshold(); this.computeDerivative = computeDerivative; this.scalePower = scalePower; } /** * Searches for features inside the provided scale space * * @param ss Scale space of an image */ @Override public void detect(PyramidFloat ss) { spaceIndex = 0; if (intensities == null) { intensities = new GrayF32[3]; intensities[0] = new GrayF32(1, 1); intensities[1] = new GrayF32(1, 1); intensities[2] = new GrayF32(1, 1); maximums = new List[3]; maximums[0] = new ArrayList<>(); maximums[1] = new ArrayList<>(); maximums[2] = new ArrayList<>(); } foundPoints.clear(); // compute feature intensity in each level for (int i = 0; i < ss.getNumLayers(); i++) { detectCandidateFeatures(ss.getLayer(i), ss.getSigma(i)); // find maximum in NxNx3 (local image and scale space) region if (i >= 2) { findLocalScaleSpaceMax(ss, i - 1); } } } /** * Use the feature detector to find candidate features in each level. Only compute the needed image derivatives. */ private void detectCandidateFeatures(T image, double sigma) { // adjust corner intensity threshold based upon the current scale factor float scaleThreshold = (float) (baseThreshold / Math.pow(sigma, scalePower)); detector.setThreshold(scaleThreshold); computeDerivative.setInput(image); D derivX = null, derivY = null; D derivXX = null, derivYY = null, derivXY = null; if (detector.getRequiresGradient()) { derivX = computeDerivative.getDerivative(true); derivY = computeDerivative.getDerivative(false); } if (detector.getRequiresHessian()) { derivXX = computeDerivative.getDerivative(true, true); derivYY = computeDerivative.getDerivative(false, false); derivXY = computeDerivative.getDerivative(true, false); } detector.process(image, derivX, derivY, derivXX, derivYY, derivXY); intensities[spaceIndex].reshape(image.width, image.height); intensities[spaceIndex].setTo(detector.getIntensity()); List m = maximums[spaceIndex]; m.clear(); QueueCorner q = detector.getMaximums(); for (int i = 0; i < q.size; i++) { m.add(q.get(i).copy()); } spaceIndex++; if (spaceIndex >= 3) spaceIndex = 0; } /** * Searches the pyramid layers up and down to see if the found 2D features are also scale space maximums. */ protected void findLocalScaleSpaceMax(PyramidFloat ss, int layerID) { int index0 = spaceIndex; int index1 = (spaceIndex + 1) % 3; int index2 = (spaceIndex + 2) % 3; List candidates = maximums[index1]; ImageBorder_F32 inten0 = (ImageBorder_F32) FactoryImageBorderAlgs.value(intensities[index0], 0); GrayF32 inten1 = intensities[index1]; ImageBorder_F32 inten2 = (ImageBorder_F32) FactoryImageBorderAlgs.value(intensities[index2], 0); float scale0 = (float) ss.scale[layerID - 1]; float scale1 = (float) ss.scale[layerID]; float scale2 = (float) ss.scale[layerID + 1]; float sigma0 = (float) ss.getSigma(layerID - 1); float sigma1 = (float) ss.getSigma(layerID); float sigma2 = (float) ss.getSigma(layerID + 1); // not sure if this is the correct way to handle the change in scale float ss0 = (float) (Math.pow(sigma0, scalePower)/scale0); float ss1 = (float) (Math.pow(sigma1, scalePower)/scale1); float ss2 = (float) (Math.pow(sigma2, scalePower)/scale2); for (Point2D_I16 c : candidates) { float val = ss1 * inten1.get(c.x, c.y); // find pixel location in each image's local coordinate int x0 = (int) (c.x * scale1 / scale0); int y0 = (int) (c.y * scale1 / scale0); int x2 = (int) (c.x * scale1 / scale2); int y2 = (int) (c.y * scale1 / scale2); if (checkMax(inten0, val / ss0, x0, y0) && checkMax(inten2, val / ss2, x2, y2)) { // put features into the scale of the upper image foundPoints.add(new ScalePoint(c.x * scale1, c.y * scale1, sigma1)); } } } protected static boolean checkMax(ImageBorder_F32 inten, float bestScore, int c_x, int c_y) { boolean isMax = true; beginLoop: for (int i = c_y - 1; i <= c_y + 1; i++) { for (int j = c_x - 1; j <= c_x + 1; j++) { if (inten.get(j, i) >= bestScore) { isMax = false; break beginLoop; } } } return isMax; } @Override public List getInterestPoints() { return foundPoints; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy