All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.interest.SiftDetector Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.interest;

import boofcv.abst.feature.detect.extract.NonMaxLimiter;
import boofcv.abst.filter.convolve.ImageConvolveSparse;
import boofcv.alg.filter.kernel.KernelMath;
import boofcv.core.image.border.FactoryImageBorder;
import boofcv.factory.filter.convolve.FactoryConvolveSparse;
import boofcv.struct.border.BorderType;
import boofcv.struct.border.ImageBorder;
import boofcv.struct.convolve.Kernel1D_F32;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.image.GrayF32;
import org.ddogleg.struct.FastQueue;

import static boofcv.alg.feature.detect.interest.FastHessianFeatureDetector.polyPeak;

/**
 * 

Implementation of SIFT [1] feature detector. Feature detection is first done by creating the first octave in * a {@link SiftScaleSpace scale space}. Then the Difference-of-Gaussian (DoG) is computed from sequential * scales inside the scale-space. From the DoG images, pixels which are maximums and minimums spatially and with * in scale are found. Edges of objects can cause false positives so those are suppressed. The remaining * features are interpolated spatially and across scale.

* *

This class is designed so that it can operate as a stand alone feature detector or so that it can be * extended to compute feature descriptors too. The advantage of the former is that the scale-space only * needs to be constructed once.

* *

Processing Steps

*
    *
  1. Construct first octave of DoG images using {@link SiftScaleSpace}
  2. *
  3. For DoG images 1 to N+1, detect features
  4. *
  5. Use {@link NonMaxLimiter} to detect features spatially.
  6. *
  7. Check to see if detected features are minimums or maximums in DoG scale space by checking the equivalent 3x3 * regions in the DoG images above and below it. {@link #isScaleSpaceExtremum} *
  8. Detect false positive edges using trace and determinant from Hessian of DoG image
  9. *
  10. Interpolate feature's (x,y,sigma) coordinate using the peak of a 2nd order polynomial (quadratic). * {@link #processFeatureCandidate}
  11. *
*

Where N is the number of scale parameters. There are N+3 scale images and N+2 DoG images in an octave. * *

Edge Detection

*

Edges can also cause local extremes (false positives) in the DoG image. To remove those false positives an * edge detector is proposed by Lowe. The edge detector is turned with the parameter 'r' and a point is considered * an edge if the following is true:
* Tr2/Det < (r+1)2/r
* where Tr and Det are the trace an determinant of a 2x2 hessian matrix computed from the DoG hessian at that point, * [dXX,dXY;dYX,dYY]

* *

Deviations from standard SIFT

*
    *
  1. Spatial maximums are not limited to a 3x3 region like they are in the paper. User configurable.
  2. *
  3. Quadratic interpolation is used independently on x,y, and scale axis.
  4. *
  5. What the scale of a DoG image is isn't specified in the paper. Assumed to be the same as the lower indexed * scale image it was computed from.
  6. *
* *

* [1] Lowe, D. "Distinctive image features from scale-invariant keypoints". International Journal of * Computer Vision, 60, 2 (2004), pp.91--110. *

* * @author Peter Abeles */ public class SiftDetector { // image pyramid that it processes protected SiftScaleSpace scaleSpace; // conversion factor to go from pixel coordinate in current octave to input image protected double pixelScaleToInput; // edge detector threshold // In the paper this is (r+1)**2/r double edgeThreshold; // all the found detections in a single octave protected FastQueue detections = new FastQueue<>(ScalePoint.class, true); // Computes image derivatives. used in edge rejection ImageConvolveSparse derivXX; ImageConvolveSparse derivXY; ImageConvolveSparse derivYY; // local scale space around the current scale image being processed GrayF32 dogLower; // DoG image in lower scale GrayF32 dogTarget; // DoG image in target scale GrayF32 dogUpper; // DoG image in upper scale double sigmaLower, sigmaTarget, sigmaUpper; // finds features from 2D intensity image private NonMaxLimiter extractor; /** * Configures SIFT detector * * @param scaleSpace Provides the scale space * @param edgeR Threshold used to remove edge responses. Larger values means its less strict. Try 10 * @param extractor Spatial feature detector that can be configured to limit the number of detected features in each scale. */ public SiftDetector(SiftScaleSpace scaleSpace , double edgeR , NonMaxLimiter extractor ) { if( !extractor.getNonmax().canDetectMaximums() || !extractor.getNonmax().canDetectMinimums() ) throw new IllegalArgumentException("The extractor must be able to detect maximums and minimums"); if( edgeR < 1 ) { throw new IllegalArgumentException("R must be >= 1"); } if( extractor.getNonmax().getIgnoreBorder() != 1 ) { throw new RuntimeException("Non-max should have an ignore border of 1"); } this.scaleSpace = scaleSpace; this.extractor = extractor; this.edgeThreshold = (edgeR+1)*(edgeR+1)/edgeR; createSparseDerivatives(); } /** * Define sparse image derivative operators. */ private void createSparseDerivatives() { Kernel1D_F32 kernelD = new Kernel1D_F32(new float[]{-1,0,1},3); Kernel1D_F32 kernelDD = KernelMath.convolve1D_F32(kernelD, kernelD); Kernel2D_F32 kernelXY = KernelMath.convolve2D(kernelD, kernelD); derivXX = FactoryConvolveSparse.horizontal1D(GrayF32.class, kernelDD); derivXY = FactoryConvolveSparse.convolve2D(GrayF32.class, kernelXY); derivYY = FactoryConvolveSparse.vertical1D(GrayF32.class, kernelDD); ImageBorder border = FactoryImageBorder.single(GrayF32.class, BorderType.EXTENDED); derivXX.setImageBorder(border); derivXY.setImageBorder(border); derivYY.setImageBorder(border); } /** * Detects SIFT features inside the input image * * @param input Input image. Not modified. */ public void process( GrayF32 input ) { scaleSpace.initialize(input); detections.reset(); do { // scale from octave to input image pixelScaleToInput = scaleSpace.pixelScaleCurrentToInput(); // detect features in the image for (int j = 1; j < scaleSpace.getNumScales()+1; j++) { // not really sure how to compute the scale for features found at a particular DoG image // using the average resulted in less visually appealing circles in a test image sigmaLower = scaleSpace.computeSigmaScale( j - 1); sigmaTarget = scaleSpace.computeSigmaScale( j ); sigmaUpper = scaleSpace.computeSigmaScale( j + 1); // grab the local DoG scale space images dogLower = scaleSpace.getDifferenceOfGaussian(j-1); dogTarget = scaleSpace.getDifferenceOfGaussian(j ); dogUpper = scaleSpace.getDifferenceOfGaussian(j+1); detectFeatures(j); } } while( scaleSpace.computeNextOctave() ); } /** * Detect features inside the Difference-of-Gaussian image at the current scale * * @param scaleIndex Which scale in the octave is it detecting features inside up. * Primarily provided here for use in child classes. */ protected void detectFeatures( int scaleIndex ) { extractor.process(dogTarget); FastQueue found = extractor.getLocalExtreme(); derivXX.setImage(dogTarget); derivXY.setImage(dogTarget); derivYY.setImage(dogTarget); for (int i = 0; i < found.size; i++) { NonMaxLimiter.LocalExtreme e = found.get(i); if( e.max ) { if( isScaleSpaceExtremum(e.location.x, e.location.y, e.getValue(), 1f)) { processFeatureCandidate(e.location.x,e.location.y,e.getValue(),e.max); } } else if( isScaleSpaceExtremum(e.location.x, e.location.y, e.getValue(), -1f)) { processFeatureCandidate(e.location.x,e.location.y,e.getValue(),e.max); } } } /** * See if the point is a local extremum in scale-space above and below. * * @param c_x x-coordinate of extremum * @param c_y y-coordinate of extremum * @param value The maximum value it is checking * @param signAdj Adjust the sign so that it can check for maximums * @return true if its a local extremum */ boolean isScaleSpaceExtremum(int c_x, int c_y, float value, float signAdj) { if( c_x <= 1 || c_y <= 1 || c_x >= dogLower.width-1 || c_y >= dogLower.height-1) return false; float v; value *= signAdj; for( int y = -1; y <= 1; y++ ) { for( int x = -1; x <= 1; x++ ) { v = dogLower.unsafe_get(c_x+x,c_y+y); if( v*signAdj >= value ) return false; v = dogUpper.unsafe_get(c_x+x,c_y+y); if( v*signAdj >= value ) return false; } } return true; } /** * Examines a local spatial extremum and interpolates its coordinates using a quadratic function. Very first * thing it does is check to see if the feature is really an edge/false positive. After that interpolates * the coordinate independently using a quadratic function along each axis. Resulting coordinate will be * in the image image's coordinate system. * * @param x x-coordinate of extremum * @param y y-coordinate of extremum * @param value value of the extremum * @param maximum true if it was a maximum */ protected void processFeatureCandidate( int x , int y , float value ,boolean maximum ) { // suppress response along edges if( isEdge(x,y) ) return; // Estimate the scale and 2D point by fitting 2nd order polynomials // This is different from the original paper float signAdj = maximum ? 1 : -1; value *= signAdj; float x0 = dogTarget.unsafe_get(x - 1, y)*signAdj; float x2 = dogTarget.unsafe_get(x + 1, y)*signAdj; float y0 = dogTarget.unsafe_get(x , y - 1)*signAdj; float y2 = dogTarget.unsafe_get(x , y + 1)*signAdj; float s0 = dogLower.unsafe_get(x , y )*signAdj; float s2 = dogUpper.unsafe_get(x , y )*signAdj; ScalePoint p = detections.grow(); // Compute the interpolated coordinate of the point in the original image coordinates p.x = pixelScaleToInput*(x + polyPeak(x0, value, x2)); p.y = pixelScaleToInput*(y + polyPeak(y0, value, y2)); // find the peak then do bilinear interpolate between the two appropriate sigmas double sigmaInterp = polyPeak(s0, value, s2); // scaled from -1 to 1 if( sigmaInterp < 0 ) { p.scale = sigmaLower*(-sigmaInterp) + (1+sigmaInterp)*sigmaTarget; } else { p.scale = sigmaUpper*sigmaInterp + (1-sigmaInterp)*sigmaTarget; } // a maximum corresponds to a dark object and a minimum to a whiter object p.white = !maximum; handleDetection(p); } /** * Function for handling a detected point. Does nothing here, but can be used by a child class * to process detections * @param p Detected point in scale-space. */ protected void handleDetection( ScalePoint p ){} /** * Performs an edge test to remove false positives. See 4.1 in [1]. */ boolean isEdge( int x , int y ) { if( edgeThreshold <= 0 ) return false; double xx = derivXX.compute(x,y); double xy = derivXY.compute(x,y); double yy = derivYY.compute(x,y); double Tr = xx + yy; double det = xx*yy - xy*xy; // Paper quite "In the unlikely event that the determinant is negative, the curvatures have different signs // so the point is discarded as not being an extremum" if( det <= 0) return true; else { // In paper this is: // Tr**2/Det < (r+1)**2/r return( Tr*Tr >= edgeThreshold*det); } } public FastQueue getDetections() { return detections; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy