All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.disparity.impl.ImplSelectRectStandardBase_S32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.disparity.impl;

import boofcv.alg.feature.disparity.SelectRectStandard;
import boofcv.struct.image.ImageGray;

/**
 * 

* Implementation of {@link SelectRectStandard} as a base class for arrays of type S32. * Extend for different output image types. *

* *

* DO NOT MODIFY. Generated by {@link GenerateSelectRectStandardBase}. *

* * @author Peter Abeles */ public abstract class ImplSelectRectStandardBase_S32> extends SelectRectStandard { // scores organized for more efficient processing int columnScore[] = new int[1]; int imageWidth; // texture threshold, use an integer value for speed. protected int textureThreshold; protected static final int discretizer = 10000; public ImplSelectRectStandardBase_S32(int maxError, int rightToLeftTolerance, double texture) { super(maxError,rightToLeftTolerance,texture); } @Override public void setTexture(double threshold) { textureThreshold = (int)(discretizer*threshold); } @Override public void configure(T imageDisparity, int minDisparity, int maxDisparity , int radiusX ) { super.configure(imageDisparity,minDisparity,maxDisparity,radiusX); if( columnScore.length < maxDisparity ) columnScore = new int[maxDisparity]; imageWidth = imageDisparity.width; } @Override public void process(int row, int[] scores ) { int indexDisparity = imageDisparity.startIndex + row*imageDisparity.stride + radiusX + minDisparity; for( int col = minDisparity; col <= imageWidth-regionWidth; col++ ) { // Determine the number of disparities that can be considered at this column // make sure the disparity search doesn't go outside the image border localMax = maxDisparityAtColumnL2R(col); // index of the element being examined in the score array int indexScore = col - minDisparity; // select the best disparity int bestDisparity = 0; int scoreBest = columnScore[0] = scores[indexScore]; indexScore += imageWidth; for( int i = 1; i < localMax; i++ ,indexScore += imageWidth) { int s = scores[indexScore]; columnScore[i] = s; if( s < scoreBest ) { scoreBest = s; bestDisparity = i; } } // detect bad matches if( scoreBest > maxError ) { // make sure the error isn't too large bestDisparity = invalidDisparity; } else if( rightToLeftTolerance >= 0 ) { // if the associate is different going the other direction it is probably noise int disparityRtoL = selectRightToLeft(col-bestDisparity-minDisparity,scores); if( Math.abs(disparityRtoL-bestDisparity) > rightToLeftTolerance ) { bestDisparity = invalidDisparity; } } // test to see if the region lacks sufficient texture if: // 1) not already eliminated 2) sufficient disparities to check, 3) it's activated if( textureThreshold > 0 && bestDisparity != invalidDisparity && localMax >= 3 ) { // find the second best disparity value and exclude its neighbors int secondBest = Integer.MAX_VALUE; for( int i = 0; i < bestDisparity-1; i++ ) { if( columnScore[i] < secondBest ) { secondBest = columnScore[i]; } } for( int i = bestDisparity+2; i < localMax; i++ ) { if( columnScore[i] < secondBest ) { secondBest = columnScore[i]; } } // similar scores indicate lack of texture // C = (C2-C1)/C1 if( discretizer *(secondBest-scoreBest) <= textureThreshold*scoreBest ) bestDisparity = invalidDisparity; } setDisparity(indexDisparity++ , bestDisparity ); } } /** * Finds the best disparity going from right to left image. * */ private int selectRightToLeft( int col , int[] scores ) { // see how far it can search int localMax = Math.min(imageWidth-regionWidth,col+maxDisparity)-col-minDisparity; int indexBest = 0; int indexScore = col; int scoreBest = scores[col]; indexScore += imageWidth+1; for( int i = 1; i < localMax; i++ ,indexScore += imageWidth+1) { int s = scores[indexScore]; if( s < scoreBest ) { scoreBest = s; indexBest = i; } } return indexBest; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy