All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.disparity.impl.SelectSparseStandardSubpixel Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.disparity.impl;

/**
 * 

* Subpixel accuracy for disparity. See {@link SelectRectSubpixel} for more details on the * mathematics. *

* * @author Peter Abeles */ public class SelectSparseStandardSubpixel { public static class S32 extends ImplSelectSparseStandardWta_S32 { public S32(int maxError, double texture) { super(maxError, texture); } @Override public boolean select(int[] scores, int maxDisparity) { if( super.select(scores, maxDisparity) ) { int disparityValue = (int)disparity; if( disparityValue == 0 || disparityValue == maxDisparity-1) { return true; } else { int c0 = scores[disparityValue-1]; int c1 = scores[disparityValue]; int c2 = scores[disparityValue+1]; double offset = (double)(c0-c2)/(double)(2*(c0-2*c1+c2)); disparity += offset; return true; } } else { return false; } } } public static class F32 extends ImplSelectSparseStandardWta_F32 { public F32(int maxError, double texture) { super(maxError, texture); } @Override public boolean select(float[] scores, int maxDisparity) { if( super.select(scores, maxDisparity) ) { int disparityValue = (int)disparity; if( disparityValue == 0 || disparityValue == maxDisparity-1) { return true; } else { float c0 = scores[disparityValue-1]; float c1 = scores[disparityValue]; float c2 = scores[disparityValue+1]; float offset = (c0-c2)/(2f*(c0-2*c1+c2)); disparity += offset; return true; } } else { return false; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy