boofcv.alg.feature.orientation.OrientationImageAverage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.orientation;
import boofcv.abst.feature.orientation.OrientationImage;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ImageRectangle;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.image.ImageGray;
/**
* Computes the orientation of a region by computing a weighted sum of each pixel's intensity
* using their respective sine and cosine values.
*
* @author Peter Abeles
*/
public abstract class OrientationImageAverage> implements OrientationImage {
// input image
protected T image;
// local variable used to define the region being examined.
// this makes it easy to avoid going outside the image
protected ImageRectangle rect = new ImageRectangle();
// converts from object radius to sample region scale
protected double objectToSample;
// Radius of the region it will sample
protected int sampleRadius;
// the original requested object radius
protected double objectRadius;
// cosine values for each pixel
protected Kernel2D_F32 kerCosine;
// sine values for each pixel
protected Kernel2D_F32 kerSine;
public OrientationImageAverage(double objectToSample,int defaultRadius) {
this.objectToSample = objectToSample;
setObjectRadius(defaultRadius);
}
@Override
public void setImage( T image ) {
this.image = image;
}
@Override
public void setObjectRadius(double objectRadius) {
this.objectRadius = objectRadius;
sampleRadius = (int)Math.ceil(objectRadius* objectToSample);
int w = sampleRadius*2+1;
kerCosine = new Kernel2D_F32(w);
kerSine = new Kernel2D_F32(w);
for(int y = -sampleRadius; y <= sampleRadius; y++ ) {
int pixelY = y+ sampleRadius;
for(int x = -sampleRadius; x <= sampleRadius; x++ ) {
int pixelX = x+ sampleRadius;
float r = (float)Math.sqrt(x*x+y*y);
kerCosine.set(pixelX,pixelY,(float)x/r);
kerSine.set(pixelX,pixelY,(float)y/r);
}
}
kerCosine.set(sampleRadius, sampleRadius,0);
kerSine.set(sampleRadius, sampleRadius,0);
}
@Override
public double compute(double X, double Y) {
int c_x = (int)(X+0.5);
int c_y = (int)(Y+0.5);
// compute the visible region while taking in account
// the image borders
rect.x0 = c_x- sampleRadius;
rect.y0 = c_y- sampleRadius;
rect.x1 = c_x+ sampleRadius +1;
rect.y1 = c_y+ sampleRadius +1;
BoofMiscOps.boundRectangleInside(image,rect);
return computeAngle(c_x,c_y);
}
protected abstract double computeAngle( int c_x , int c_y );
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy