boofcv.alg.feature.orientation.impl.ImplOrientationImageAverageIntegral Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.orientation.impl;
import boofcv.abst.feature.orientation.RegionOrientation;
import boofcv.alg.feature.orientation.OrientationIntegralBase;
import boofcv.factory.transform.ii.FactorySparseIntegralFilters;
import boofcv.struct.convolve.Kernel2D_F64;
import boofcv.struct.image.ImageGray;
import boofcv.struct.sparse.GradientValue;
import boofcv.struct.sparse.SparseScaleSample_F64;
/**
*
* Estimates the orientation of a region using a "derivative free" method. Points are sampled using
* an integral image.
*
*
* @author Peter Abeles
*/
public class ImplOrientationImageAverageIntegral,G extends GradientValue>
extends OrientationIntegralBase
{
// cosine values for each pixel
protected Kernel2D_F64 kerCosine;
// sine values for each pixel
protected Kernel2D_F64 kerSine;
private SparseScaleSample_F64 sampler;
/**
*
* @param sampleRadius Radius of the region being considered in terms of Wavelet samples. Typically 6.
* @param weightSigma Sigma for weighting distribution. Zero for unweighted.
*/
public ImplOrientationImageAverageIntegral(double radiusToScale,
int sampleRadius, double period,
int sampleWidth, double weightSigma,
Class imageType) {
super(radiusToScale,sampleRadius,period,sampleWidth,weightSigma, false, imageType);
int w = sampleRadius*2+1;
kerCosine = new Kernel2D_F64(w);
kerSine = new Kernel2D_F64(w);
for( int y=-sampleRadius; y <= sampleRadius; y++ ) {
int pixelY = y+sampleRadius;
for( int x=-sampleRadius; x <= sampleRadius; x++ ) {
int pixelX = x+sampleRadius;
float r = (float)Math.sqrt(x*x+y*y);
kerCosine.set(pixelX,pixelY,(float)x/r);
kerSine.set(pixelX,pixelY,(float)y/r);
}
}
kerCosine.set(sampleRadius,sampleRadius,0);
kerSine.set(sampleRadius,sampleRadius,0);
sampler = FactorySparseIntegralFilters.sample(imageType);
setObjectRadius(1.0/objectRadiusToScale);
}
@Override
public void setImage(T integralImage) {
super.setImage(integralImage);
sampler.setImage(integralImage);
}
@Override
public void setObjectRadius(double radius) {
super.setObjectRadius(radius);
sampler.setWidth(kernelWidth * scale);
}
@Override
public double compute(double c_x, double c_y) {
double period = scale*this.period;
double tl_x = c_x - sampleRadius*period;
double tl_y = c_y - sampleRadius*period;
if( weights == null )
return computeUnweighted(tl_x,tl_y,period);
else
return computeWeighted(tl_x, tl_y, period);
}
protected double computeUnweighted( double tl_x, double tl_y,
double samplePeriod )
{
// add 0.5 to c_x and c_y to have it round
tl_x += 0.5;
tl_y += 0.5;
double Dx=0,Dy=0;
int i = 0;
for(int y = 0; y < sampleWidth; y++ ) {
int pixelY = (int)(tl_y + y * samplePeriod);
for(int x = 0; x < sampleWidth; x++ , i++ ) {
int pixelX = (int)(tl_x + x * samplePeriod);
if( sampler.isInBounds(pixelX,pixelY)) {
try {
double val = sampler.compute(pixelX,pixelY);
Dx += kerCosine.data[i]*val;
Dy += kerSine.data[i]*val;
} catch( RuntimeException e ) {
sampler.isInBounds(pixelX,pixelY);
sampler.compute(pixelX,pixelY);
throw e;
}
}
}
}
return Math.atan2(Dy,Dx);
}
protected double computeWeighted( double tl_x, double tl_y,
double samplePeriod )
{
// add 0.5 to c_x and c_y to have it round
tl_x += 0.5;
tl_y += 0.5;
double Dx=0,Dy=0;
int i = 0;
for(int y = 0; y < sampleWidth; y++ ) {
int pixelY = (int)(tl_y + y * samplePeriod);
for(int x = 0; x < sampleWidth; x++ , i++ ) {
int pixelX = (int)(tl_x + x * samplePeriod);
if( sampler.isInBounds(pixelX,pixelY)) {
double val = sampler.compute(pixelX,pixelY);
double w = weights.data[i];
Dx += w*kerCosine.data[i]*val;
Dy += w*kerSine.data[i]*val;
}
}
}
return Math.atan2(Dy,Dx);
}
@Override
public RegionOrientation copy() {
return new ImplOrientationImageAverageIntegral<>(
objectRadiusToScale,sampleRadius,period,sampleWidth,weightSigma,getImageType());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy