boofcv.alg.feature.orientation.impl.ImplOrientationSlidingWindowIntegral Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.orientation.impl;
import boofcv.abst.feature.orientation.RegionOrientation;
import boofcv.alg.feature.orientation.OrientationIntegralBase;
import boofcv.struct.image.ImageGray;
import boofcv.struct.sparse.GradientValue;
import georegression.metric.UtilAngle;
import org.ddogleg.sorting.QuickSort_F64;
/**
*
* Implementation of {@link boofcv.alg.feature.orientation.OrientationSlidingWindow} for integral images.
* TODO comment how this implementation works
*
*
* @author Peter Abeles
*/
public class ImplOrientationSlidingWindowIntegral
,G extends GradientValue>
extends OrientationIntegralBase
{
// where the output from the derivative is stored
double[] derivX;
double[] derivY;
// the size of the angle window it will consider in radians
protected double windowSize;
// the angle each pixel is pointing
protected double angles[];
// clockwise ordering of angles
protected int order[];
int total = 0;
QuickSort_F64 sorter = new QuickSort_F64();
/**
* Specifies configuration parameters and initializes data structures
*
* @param samplePeriod How often the image is sampled. This number is scaled. Typically 1.
* @param windowSize Angular window that is slide across
* @param sampleRadius Radius of the region being considered in terms of samples. Typically 6.
* @param weightSigma Sigma for weighting distribution. Zero for unweighted.
* @param sampleKernelWidth Size of kernel doing the sampling. Typically 4.
* @param integralType Type of integral image being processed.
*/
public ImplOrientationSlidingWindowIntegral(double radiusToScale , double samplePeriod, double windowSize,
int sampleRadius, double weightSigma, int sampleKernelWidth,
Class integralType) {
super(radiusToScale,sampleRadius,samplePeriod,sampleKernelWidth,weightSigma, true, integralType);
this.windowSize = windowSize;
derivX = new double[sampleWidth * sampleWidth];
derivY = new double[sampleWidth * sampleWidth];
angles = new double[ sampleWidth * sampleWidth];
order = new int[ angles.length ];
}
@Override
public double compute(double c_x, double c_y) {
double period = scale*this.period;
// top left corner of the region being sampled
double tl_x = c_x - sampleRadius *period;
double tl_y = c_y - sampleRadius *period;
computeGradient(tl_x,tl_y,period);
// apply weight to each gradient dependent on its position
if( weights != null ) {
for( int i = 0; i < total; i++ ) {
double w = weights.data[i];
derivX[i] *= w;
derivY[i] *= w;
}
}
for( int i = 0; i < total; i++ ) {
angles[i] = Math.atan2(derivY[i],derivX[i]);
}
// order points from lowest to highest
sorter.sort(angles,0, angles.length, order);
return estimateAngle();
}
private void computeGradient( double tl_x , double tl_y , double samplePeriod )
{
// add 0.5 to c_x and c_y to have it round when converted to an integer pixel
// this is faster than the straight forward method
tl_x += 0.5;
tl_y += 0.5;
total = 0;
for(int y = 0; y < sampleWidth; y++ ) {
for(int x = 0; x < sampleWidth; x++ , total++ ) {
int xx = (int)(tl_x + x * samplePeriod);
int yy = (int)(tl_y + y * samplePeriod);
if( g.isInBounds(xx,yy) ) {
GradientValue deriv = g.compute(xx,yy);
double dx = deriv.getX();
double dy = deriv.getY();
derivX[total] = dx;
derivY[total] = dy;
} else {
derivX[total] = 0;
derivY[total] = 0;
}
}
}
}
private double estimateAngle() {
int start = 0;
int end = 1;
int startIndex = order[start];
int endIndex = order[end];
double sumX=derivX[startIndex];
double sumY=derivY[startIndex];
double best=sumX*sumX+sumY*sumY;
double bestX=sumX;
double bestY=sumY;
double endAngle = angles[endIndex];
while( start != total ) {
startIndex = order[start];
double startAngle = angles[startIndex];
// only compute the average if the angles are close to each other
while( UtilAngle.dist(startAngle,endAngle) <= windowSize ) {
sumX += derivX[endIndex];
sumY += derivY[endIndex];
// see if the magnitude of the gradient inside this bound is greater
// than the previous best
double mag = sumX*sumX + sumY*sumY;
if( mag > best ) {
best = mag;
bestX = sumX;
bestY = sumY;
}
end++;
if( end >= total )
end = 0;
endIndex = order[end];
endAngle = angles[endIndex];
// if it cycled all the way around stop
if( endIndex == startIndex )
break;
}
// remove the first element from the list
sumX -= derivX[startIndex];
sumY -= derivY[startIndex];
start++;
}
return Math.atan2(bestY,bestX);
}
@Override
public RegionOrientation copy() {
return new ImplOrientationSlidingWindowIntegral(
objectRadiusToScale,period,windowSize,sampleRadius,weightSigma,sampleWidth,getImageType());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy