boofcv.factory.feature.associate.FactoryAssociation Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.factory.feature.associate;
import boofcv.abst.feature.associate.*;
import boofcv.alg.descriptor.KdTreeTuple_F64;
import boofcv.alg.feature.associate.AssociateGreedy;
import boofcv.alg.feature.associate.AssociateNearestNeighbor;
import boofcv.struct.feature.*;
import org.ddogleg.nn.FactoryNearestNeighbor;
import org.ddogleg.nn.NearestNeighbor;
import javax.annotation.Nullable;
/**
* Creates algorithms for associating {@link boofcv.struct.feature.TupleDesc_F64} features.
*
* @author Peter Abeles
*/
@SuppressWarnings("unchecked")
public class FactoryAssociation {
/**
* Returns an algorithm for associating features together which uses a brute force greedy algorithm.
* See {@link AssociateGreedy} for details.
*
* @param score Computes the fit score between two features.
* @param maxError Maximum allowed error/fit score between two features. To disable set to Double.MAX_VALUE
* @param backwardsValidation If true associations are validated by associating in the reverse direction. If the
* forward and reverse matches fit an association is excepted.
* @param Data structure being associated
* @return AssociateDescription
*/
public static AssociateDescription
greedy( ScoreAssociation score ,
double maxError ,
boolean backwardsValidation )
{
AssociateGreedy alg = new AssociateGreedy<>(score, backwardsValidation);
alg.setMaxFitError(maxError);
WrapAssociateGreedy ret = new WrapAssociateGreedy<>(alg);
return ret;
}
/**
* Approximate association using a K-D tree degree of moderate size (10-15) that uses a best-bin-first search
* order.
*
* @see AssociateNearestNeighbor
* @see org.ddogleg.nn.alg.searches.KdTreeSearch1Bbf
*
* @param dimension Number of elements in the feature vector
* @param maxNodesSearched Maximum number of nodes it will search. Controls speed and accuracy.
* @return Association using approximate nearest neighbor
*/
public static AssociateDescription kdtree( ConfigAssociateNearestNeighbor configNN ,
int dimension, int maxNodesSearched ) {
NearestNeighbor nn = FactoryNearestNeighbor.kdtree(new KdTreeTuple_F64(dimension),maxNodesSearched);
return associateNearestNeighbor(configNN,nn);
}
/**
* Approximate association using multiple random K-D trees (random forest) for descriptors with a high degree of
* freedom, e.g. > 20
*
* @see AssociateNearestNeighbor
* @see org.ddogleg.nn.wrap.KdForestBbfSearch
*
* @param dimension Number of elements in the feature vector
* @param maxNodesSearched Maximum number of nodes it will search. Controls speed and accuracy.
* @param numTrees Number of trees that are considered. Try 10 and tune.
* @param numConsiderSplit Number of nodes that are considered when generating a tree. Must be less than the
* point's dimension. Try 5
* @param randomSeed Seed used by random number generator
* @return Association using approximate nearest neighbor
*/
public static AssociateDescription kdRandomForest( ConfigAssociateNearestNeighbor configNN ,
int dimension,
int maxNodesSearched ,
int numTrees ,
int numConsiderSplit ,
long randomSeed) {
NearestNeighbor nn = FactoryNearestNeighbor.kdRandomForest(
new KdTreeTuple_F64(dimension),
maxNodesSearched,numTrees,numConsiderSplit,randomSeed);
return associateNearestNeighbor(configNN,nn);
}
public static AssociateNearestNeighbor
associateNearestNeighbor( @Nullable ConfigAssociateNearestNeighbor config ,
NearestNeighbor nn )
{
if( config == null )
config = new ConfigAssociateNearestNeighbor();
config.checkValidity();
AssociateNearestNeighbor assoc = new AssociateNearestNeighbor<>(nn);
assoc.setRatioUsesSqrt(config.distanceIsSquared);
assoc.setMaxScoreThreshold(config.maxErrorThreshold);
assoc.setScoreRatioThreshold(config.scoreRatioThreshold);
return assoc;
}
/**
* Given a feature descriptor type it returns a "reasonable" default {@link ScoreAssociation}.
*
* @param tupleType Class type which extends {@link boofcv.struct.feature.TupleDesc}
* @return A class which can score two potential associations
*/
public static
ScoreAssociation defaultScore( Class tupleType ) {
if( NccFeature.class.isAssignableFrom(tupleType) ) {
return (ScoreAssociation)new ScoreAssociateNccFeature();
} else if( TupleDesc_F64.class.isAssignableFrom(tupleType) ) {
return (ScoreAssociation)new ScoreAssociateEuclideanSq_F64();
} else if( tupleType == TupleDesc_F32.class ) {
return (ScoreAssociation)new ScoreAssociateEuclideanSq_F32();
} else if( tupleType == TupleDesc_U8.class ) {
return (ScoreAssociation)new ScoreAssociateSad_U8();
} else if( tupleType == TupleDesc_B.class ) {
return (ScoreAssociation)new ScoreAssociateHamming_B();
} else {
throw new IllegalArgumentException("Unknown tuple type: "+tupleType);
}
}
/**
* Scores features based on Sum of Absolute Difference (SAD).
*
* @param tupleType Type of descriptor being scored
* @return SAD scorer
*/
public static
ScoreAssociation scoreSad( Class tupleType ) {
if( TupleDesc_F64.class.isAssignableFrom(tupleType) ) {
return (ScoreAssociation)new ScoreAssociateSad_F64();
} else if( tupleType == TupleDesc_F32.class ) {
return (ScoreAssociation)new ScoreAssociateSad_F32();
} else if( tupleType == TupleDesc_U8.class ) {
return (ScoreAssociation)new ScoreAssociateSad_U8();
} else if( tupleType == TupleDesc_S8.class ) {
return (ScoreAssociation)new ScoreAssociateSad_S8();
} else {
throw new IllegalArgumentException("SAD score not supported for type "+tupleType.getSimpleName());
}
}
/**
* Scores features based on their Normalized Cross-Correlation (NCC).
*
* @return NCC score
*/
public static ScoreAssociation scoreNcc() {
return new ScoreAssociateNccFeature();
}
/**
* Scores features based on the Euclidean distance between them. The square is often used instead
* of the Euclidean distance since it is much faster to compute.
*
* @param tupleType Type of descriptor being scored
* @param squared IF true the distance squared is returned. Usually true
* @return Euclidean distance measure
*/
public static
ScoreAssociation scoreEuclidean( Class tupleType , boolean squared ) {
if( TupleDesc_F64.class.isAssignableFrom(tupleType) ) {
if( squared )
return (ScoreAssociation)new ScoreAssociateEuclideanSq_F64();
else
return (ScoreAssociation)new ScoreAssociateEuclidean_F64();
} else if( tupleType == TupleDesc_F32.class ) {
if( squared )
return (ScoreAssociation)new ScoreAssociateEuclideanSq_F32();
}
throw new IllegalArgumentException("Euclidean score not yet supported for type "+tupleType.getSimpleName());
}
/**
* Hamming distance between two binary descriptors.
*
* @param tupleType Type of descriptor being scored
* @return Hamming distance measure
*/
public static
ScoreAssociation scoreHamming( Class tupleType ) {
if( tupleType == TupleDesc_B.class ) {
return (ScoreAssociation)new ScoreAssociateHamming_B();
}
throw new IllegalArgumentException("Hamming distance not yet supported for type "+tupleType.getSimpleName());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy