All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.factory.feature.detect.interest.FactoryDetectPoint Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.factory.feature.detect.interest;

import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.abst.feature.detect.intensity.*;
import boofcv.abst.feature.detect.interest.ConfigFastCorner;
import boofcv.abst.feature.detect.interest.ConfigGeneralDetector;
import boofcv.abst.feature.detect.interest.PointDetector;
import boofcv.abst.feature.detect.interest.WrapFastToPointDetector;
import boofcv.abst.filter.blur.BlurStorageFilter;
import boofcv.alg.feature.detect.intensity.FastCornerDetector;
import boofcv.alg.feature.detect.intensity.GradientCornerIntensity;
import boofcv.alg.feature.detect.intensity.HessianBlobIntensity;
import boofcv.alg.feature.detect.interest.GeneralFeatureDetector;
import boofcv.factory.feature.detect.extract.FactoryFeatureExtractor;
import boofcv.factory.feature.detect.intensity.FactoryIntensityPoint;
import boofcv.factory.feature.detect.intensity.FactoryIntensityPointAlg;
import boofcv.factory.filter.blur.FactoryBlurFilter;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;

import javax.annotation.Nullable;

/**
 * 

* Creates instances of {@link GeneralFeatureDetector}, which detects the location of * point features inside an image. *

*

*

* NOTE: Sometimes the image border is ignored and some times it is not. If feature intensities are not * computed along the image border then it will be full of zeros. In that case the ignore border region * needs to be increased for non-max suppression or else it might generate a false positive. *

* * @author Peter Abeles */ public class FactoryDetectPoint { /** * Detects Harris corners. * * @param configDetector Configuration for feature detector. * @param weighted Is a Gaussian weight applied to the sample region? False is much faster. * @param derivType Type of derivative image. * @see boofcv.alg.feature.detect.intensity.HarrisCornerIntensity */ public static , D extends ImageGray> GeneralFeatureDetector createHarris( @Nullable ConfigGeneralDetector configDetector, boolean weighted, Class derivType) { if( configDetector == null) configDetector = new ConfigGeneralDetector(); GradientCornerIntensity cornerIntensity = FactoryIntensityPointAlg.harris(configDetector.radius, 0.04f, weighted, derivType); return createGeneral(cornerIntensity, configDetector); } /** * Detects Shi-Tomasi corners. * * @param configDetector Configuration for feature detector. * @param weighted Is a Gaussian weight applied to the sample region? False is much faster. * @param derivType Type of derivative image. * @see boofcv.alg.feature.detect.intensity.ShiTomasiCornerIntensity */ public static , D extends ImageGray> GeneralFeatureDetector createShiTomasi( @Nullable ConfigGeneralDetector configDetector, boolean weighted, Class derivType) { if( configDetector == null) configDetector = new ConfigGeneralDetector(); GradientCornerIntensity cornerIntensity = FactoryIntensityPointAlg.shiTomasi(configDetector.radius, weighted, derivType); return createGeneral(cornerIntensity, configDetector); } /** * Detects Kitchen and Rosenfeld corners. * * @param configDetector Configuration for feature detector. * @param derivType Type of derivative image. * @see boofcv.alg.feature.detect.intensity.KitRosCornerIntensity */ public static , D extends ImageGray> GeneralFeatureDetector createKitRos(@Nullable ConfigGeneralDetector configDetector, Class derivType) { if( configDetector == null) configDetector = new ConfigGeneralDetector(); GeneralFeatureIntensity intensity = new WrapperKitRosCornerIntensity<>(derivType); return createGeneral(intensity, configDetector); } /** * Creates a Fast corner detector with feature intensity for additional pruning. Fast features * have minimums and maximums. * * @param configFast Configuration for FAST feature detector * @param configDetector Configuration for feature extractor. * @param imageType ype of input image. * @see FastCornerDetector */ @SuppressWarnings("UnnecessaryLocalVariable") public static , D extends ImageGray> GeneralFeatureDetector createFast( @Nullable ConfigFastCorner configFast , ConfigGeneralDetector configDetector , Class imageType) { if( configFast == null ) configFast = new ConfigFastCorner(); configFast.checkValidity(); FastCornerDetector alg = FactoryIntensityPointAlg.fast(configFast.pixelTol, configFast.minContinuous, imageType); alg.setMaxFeaturesFraction(configFast.maxFeatures); GeneralFeatureIntensity intensity = new WrapperFastCornerIntensity<>(alg); return createGeneral(intensity, configDetector); } /** * Creates a Fast corner detector * * @param configFast Configuration for FAST feature detector * @param imageType ype of input image. * @see FastCornerDetector */ public static > PointDetector createFast( @Nullable ConfigFastCorner configFast , Class imageType) { if( configFast == null ) configFast = new ConfigFastCorner(); configFast.checkValidity(); FastCornerDetector alg = FactoryIntensityPointAlg.fast(configFast.pixelTol, configFast.minContinuous, imageType); alg.setMaxFeaturesFraction(configFast.maxFeatures); return new WrapFastToPointDetector<>(alg); } /** * Creates a median filter corner detector. * * @param configDetector Configuration for feature detector. * @param imageType Type of input image. * @see boofcv.alg.feature.detect.intensity.MedianCornerIntensity */ public static , D extends ImageGray> GeneralFeatureDetector createMedian(@Nullable ConfigGeneralDetector configDetector, Class imageType) { if( configDetector == null) configDetector = new ConfigGeneralDetector(); BlurStorageFilter medianFilter = FactoryBlurFilter.median(ImageType.single(imageType), configDetector.radius); GeneralFeatureIntensity intensity = new WrapperMedianCornerIntensity<>(medianFilter); return createGeneral(intensity, configDetector); } /** * Creates a Hessian based blob detector. Minimums and Maximums. * * @param type The type of Hessian based blob detector to use. DETERMINANT often works well. * @param configDetector Configuration for feature detector. * @param derivType Type of derivative image. * @see HessianBlobIntensity */ public static , D extends ImageGray> GeneralFeatureDetector createHessian(HessianBlobIntensity.Type type, @Nullable ConfigGeneralDetector configDetector, Class derivType) { if( configDetector == null) configDetector = new ConfigGeneralDetector(); GeneralFeatureIntensity intensity = FactoryIntensityPoint.hessian(type, derivType); return createGeneral(intensity, configDetector); } public static , D extends ImageGray> GeneralFeatureDetector createGeneral(GradientCornerIntensity cornerIntensity, ConfigGeneralDetector config) { GeneralFeatureIntensity intensity = new WrapperGradientCornerIntensity<>(cornerIntensity); return createGeneral(intensity, config); } public static , D extends ImageGray> GeneralFeatureDetector createGeneral(GeneralFeatureIntensity intensity, ConfigGeneralDetector config ) { // create a copy since it's going to modify the detector config ConfigGeneralDetector foo = new ConfigGeneralDetector(); foo.setTo(config); config = foo; config.ignoreBorder += config.radius; if( !intensity.localMaximums() ) config.detectMaximums = false; if( !intensity.localMinimums() ) config.detectMinimums = false; NonMaxSuppression extractor = FactoryFeatureExtractor.nonmax(config); GeneralFeatureDetector det = new GeneralFeatureDetector<>(intensity, extractor); det.setMaxFeatures(config.maxFeatures); return det; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy