boofcv.factory.segmentation.FactorySegmentationAlg Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.factory.segmentation;
import boofcv.alg.interpolate.InterpolatePixelMB;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.interpolate.InterpolationType;
import boofcv.alg.segmentation.ComputeRegionMeanColor;
import boofcv.alg.segmentation.fh04.FhEdgeWeights;
import boofcv.alg.segmentation.fh04.SegmentFelzenszwalbHuttenlocher04;
import boofcv.alg.segmentation.fh04.impl.*;
import boofcv.alg.segmentation.ms.*;
import boofcv.alg.segmentation.slic.*;
import boofcv.alg.segmentation.watershed.WatershedVincentSoille1991;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.ConnectRule;
import boofcv.struct.border.BorderType;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
/**
* Factory for low level segmentation algorithms.
*
* @author Peter Abeles
*/
public class FactorySegmentationAlg {
/**
* Creates an instance of {@link boofcv.alg.segmentation.ComputeRegionMeanColor} for the specified image type.
*
* @param imageType image type
* @return ComputeRegionMeanColor
*/
public static >
ComputeRegionMeanColor regionMeanColor(ImageType imageType) {
if( imageType.getFamily() == ImageType.Family.GRAY) {
switch( imageType.getDataType() ) {
case U8:
return (ComputeRegionMeanColor)new ComputeRegionMeanColor.U8();
case F32:
return (ComputeRegionMeanColor)new ComputeRegionMeanColor.F32();
}
} else if( imageType.getFamily() == ImageType.Family.PLANAR) {
int N = imageType.getNumBands();
switch( imageType.getDataType() ) {
case U8:
return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_U8(N);
case F32:
return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_F32(N);
}
}
throw new IllegalArgumentException("Unknown imageType");
}
/**
* Creates an instance of {@link boofcv.alg.segmentation.ms.SegmentMeanShift}. Uniform distributions are used for spacial and color
* weights.
*
* @param config Specify configuration for mean-shift
* @param imageType Type of input image
* @return SegmentMeanShift
*/
public static>
SegmentMeanShift meanShift(@Nullable ConfigSegmentMeanShift config, ImageType imageType )
{
if( config == null )
config = new ConfigSegmentMeanShift();
int spacialRadius = config.spacialRadius;
float colorRadius = config.colorRadius;
int maxIterations = 20;
float convergenceTol = 0.1f;
SegmentMeanShiftSearch search;
if( imageType.getFamily() == ImageType.Family.GRAY) {
InterpolatePixelS interp = FactoryInterpolation.bilinearPixelS(imageType.getImageClass(), BorderType.EXTENDED);
search = new SegmentMeanShiftSearchGray(maxIterations,convergenceTol,interp,
spacialRadius,spacialRadius,colorRadius,config.fast);
} else {
InterpolatePixelMB interp = FactoryInterpolation.createPixelMB(0,255,
InterpolationType.BILINEAR, BorderType.EXTENDED,(ImageType)imageType);
search = new SegmentMeanShiftSearchColor(maxIterations,convergenceTol,interp,
spacialRadius,spacialRadius,colorRadius,config.fast,imageType);
}
ComputeRegionMeanColor regionColor = regionMeanColor(imageType);
MergeRegionMeanShift merge = new MergeRegionMeanShift(spacialRadius/2+1,Math.max(1,colorRadius/2));
MergeSmallRegions prune = config.minimumRegionSize >= 2 ?
new MergeSmallRegions<>(config.minimumRegionSize, config.connectRule, regionColor) : null;
return new SegmentMeanShift<>(search, merge, prune, config.connectRule);
}
public static >
FhEdgeWeights weightsFelzenszwalb04( ConnectRule rule , ImageType imageType) {
if( imageType.getFamily() == ImageType.Family.GRAY) {
if( rule == ConnectRule.FOUR ) {
switch( imageType.getDataType() ) {
case U8:
return (FhEdgeWeights)new FhEdgeWeights4_U8();
case F32:
return (FhEdgeWeights)new FhEdgeWeights4_F32();
}
} else if( rule == ConnectRule.EIGHT ) {
switch( imageType.getDataType() ) {
case U8:
return (FhEdgeWeights)new FhEdgeWeights8_U8();
case F32:
return (FhEdgeWeights)new FhEdgeWeights8_F32();
}
}
} else if( imageType.getFamily() == ImageType.Family.PLANAR) {
int N = imageType.getNumBands();
if( rule == ConnectRule.FOUR ) {
switch( imageType.getDataType() ) {
case U8:
return (FhEdgeWeights)new FhEdgeWeights4_PLU8(N);
case F32:
return (FhEdgeWeights)new FhEdgeWeights4_PLF32(N);
}
} else if( rule == ConnectRule.EIGHT ) {
switch( imageType.getDataType() ) {
case U8:
return (FhEdgeWeights)new FhEdgeWeights8_PLU8(N);
case F32:
return (FhEdgeWeights)new FhEdgeWeights8_PLF32(N);
}
}
}
throw new IllegalArgumentException("Unknown imageType or connect rule");
}
public static>
SegmentFelzenszwalbHuttenlocher04 fh04(@Nullable ConfigFh04 config, ImageType imageType)
{
if( config == null )
config = new ConfigFh04();
FhEdgeWeights edgeWeights = weightsFelzenszwalb04(config.connectRule,imageType);
SegmentFelzenszwalbHuttenlocher04 alg =
new SegmentFelzenszwalbHuttenlocher04<>(config.K, config.minimumRegionSize, edgeWeights);
if( config.approximateSortBins > 0 ) {
alg.configureApproximateSort(config.approximateSortBins);
}
return alg;
}
public static>
SegmentSlic slic(@Nonnull ConfigSlic config , ImageType imageType )
{
if( config == null )
throw new IllegalArgumentException("No default configuration since the number of segments must be specified.");
if( imageType.getFamily() == ImageType.Family.GRAY) {
switch( imageType.getDataType() ) {
case U8:
return (SegmentSlic)new SegmentSlic_U8(config.numberOfRegions,
config.spacialWeight,config.totalIterations,config.connectRule);
case F32:
return (SegmentSlic)new SegmentSlic_F32(config.numberOfRegions,
config.spacialWeight,config.totalIterations,config.connectRule);
}
} else if( imageType.getFamily() == ImageType.Family.PLANAR) {
int N = imageType.getNumBands();
switch( imageType.getDataType() ) {
case U8:
return (SegmentSlic)new SegmentSlic_PlU8(config.numberOfRegions,
config.spacialWeight,config.totalIterations,config.connectRule,N);
case F32:
return (SegmentSlic)new SegmentSlic_PlF32(config.numberOfRegions,
config.spacialWeight,config.totalIterations,config.connectRule,N);
}
}
throw new IllegalArgumentException("Unknown imageType or connect rule");
}
public static WatershedVincentSoille1991 watershed( ConnectRule rule ) {
if( rule == ConnectRule.FOUR )
return new WatershedVincentSoille1991.Connect4();
else if( rule == ConnectRule.EIGHT )
return new WatershedVincentSoille1991.Connect8();
else
throw new IllegalArgumentException("Unknown connectivity rule");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy