All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.line.HoughTransformGradient Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.line;


import boofcv.abst.feature.detect.extract.NonMaxSuppression;
import boofcv.alg.InputSanityCheck;
import boofcv.alg.feature.detect.peak.MeanShiftPeak;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.alg.weights.WeightPixelGaussian_F32;
import boofcv.core.image.FactoryGImageGray;
import boofcv.core.image.GImageGray;
import boofcv.struct.QueueCorner;
import boofcv.struct.border.BorderType;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import georegression.struct.line.LineParametric2D_F32;
import georegression.struct.point.Point2D_F32;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F32;

import java.util.ArrayList;
import java.util.List;

/**
 * 

* Base class for Hough transforms which use a pixel coordinate and the gradient to describe a line. *

* *

* [1] Section 9.3 of E.R. Davies, "Machine Vision Theory Algorithms Practicalities," 3rd Ed. 2005 *

* * @author Peter Abeles */ public class HoughTransformGradient> { // extracts line from the transform NonMaxSuppression extractor; // stores returned lines FastQueue linesAll = new FastQueue<>(10, LineParametric2D_F32.class, true); // Lines after similar ones have been merged together List linesMerged = new ArrayList<>(); // contains a set of counts for detected lines in each pixel // floating point image used because that's what FeatureExtractor's take as input GrayF32 transform = new GrayF32(1,1); // found lines in transform space final QueueCorner foundLines = new QueueCorner(10); // list of points in the transform with non-zero values final QueueCorner candidates = new QueueCorner(10); // line intensities for later pruning GrowQueue_F32 foundIntensity = new GrowQueue_F32(10); // Refine lines using mean shift. If radius <= 0 it won't be used MeanShiftPeak refine = new MeanShiftPeak<>(10,0.001f, new WeightPixelGaussian_F32(),GrayF32.class, BorderType.ZERO); HoughTransformParameters parameters; // used to make the input image type generic GImageGray _derivX,_derivY; // post processing pruning ImageLinePruneMerge post = new ImageLinePruneMerge(); // tuning parameters for merging double mergeAngle = Math.PI*0.05; double mergeDistance = 10; int maxLines = 0; // zero means no restrictions /** * Specifies parameters of transform. * * @param extractor Extracts local maxima from transform space. A set of candidates is provided, but can be ignored. */ public HoughTransformGradient(NonMaxSuppression extractor, HoughTransformParameters parameters, Class derivType ) { this.extractor = extractor; this.parameters = parameters; refine.setImage(transform); refine.setRadius(3); _derivX = FactoryGImageGray.create(derivType); _derivY = FactoryGImageGray.create(derivType); } /** * Computes the Hough transform using the image gradient and a binary image which flags pixels as being edges or not. * * @param derivX (Input) Image derivative along x-axis. * @param derivY (Input) Image derivative along y-axis. * @param binary (Input) Non-zero pixels are considered to be line pixels. */ public > void transform(D derivX , D derivY , GrayU8 binary ) { InputSanityCheck.checkSameShape(derivX,derivY,binary); parameters.initialize(derivX.width,derivX.height,transform); ImageMiscOps.fill(transform,0); candidates.reset(); _derivX.wrap(derivX); _derivY.wrap(derivY); transform(binary); extractLines(); if( maxLines <= 0 ) { linesMerged.clear(); linesMerged.addAll(linesAll.toList()); } else { mergeLines(binary.width,binary.height); } } /** * Searches for local maximas and converts into lines. */ protected void extractLines() { linesAll.reset(); foundLines.reset(); foundIntensity.reset(); extractor.process(transform,null, candidates,null, foundLines); for( int i = 0; i < foundLines.size(); i++ ) { Point2D_I16 p = foundLines.get(i); if( parameters.isTransformValid(p.x,p.y) ) { LineParametric2D_F32 l = linesAll.grow(); l.p.set(p.x,p.y); refine.search(p.x,p.y); // check for divergence if( l.p.distance(refine.getPeakX(),refine.getPeakY()) < refine.getRadius()*2 ) { l.p.set(refine.getPeakX(),refine.getPeakY()); } parameters.transformToLine(l.p.x,l.p.y,l); foundIntensity.push(transform.get(p.x,p.y)); } } } protected void mergeLines( int width , int height ) { post.reset(); for( int i = 0; i < linesAll.size(); i++ ) { post.add(linesAll.get(i),foundIntensity.get(i)); } // NOTE: angular accuracy is a function of range from sub image center. This pruning // function uses a constant value for range accuracy. A custom algorithm should really // be used here. post.pruneSimilar((float) mergeAngle, (float)mergeDistance, width, height); post.pruneNBest(maxLines); post.createList(linesMerged); } /** * Takes the detected point along the line and its gradient and converts it into transform space. * @param x point in image. * @param y point in image. * @param derivX gradient of point. * @param derivY gradient of point. */ final protected void parameterize( final QueueCorner candidates, final int x , final int y , float derivX , float derivY ) { Point2D_F32 parameter = new Point2D_F32(); parameters.parameterize(x,y,derivX,derivY,parameter); // finds the foot a line normal equation and put the point into image coordinate int x0 = (int)parameter.x; int y0 = (int)parameter.y; // weights for bilinear interpolate type weightings float wx = parameter.x-x0; float wy = parameter.y-y0; // make a soft decision and spread counts across neighbors addParameters(candidates,x0,y0, (1f-wx)*(1f-wy)); addParameters(candidates,x0+1,y0, (wx)*(1f-wy)); addParameters(candidates,x0,y0+1, (1f-wx)*(wy)); addParameters(candidates,x0+1,y0+1, (wx)*(wy)); } final protected void addParameters( QueueCorner candidates, int x , int y , float amount ) { if( transform.isInBounds(x,y)) { int index = transform.startIndex+y*transform.stride+x; // keep track of candidate pixels so that a sparse search can be done // to detect lines if( transform.data[index] == 0 ) candidates.add(x,y); transform.data[index] += amount; } } /** * Returns the Hough transform image. * * @return Transform image. */ public GrayF32 getTransform() { return transform; } public FastQueue getLinesAll() { return linesAll; } /** * Returns the intensity/edge count for each returned line. Useful when doing * post processing pruning. * * @return Array containing line intensities. */ public float[] getFoundIntensity() { return foundIntensity.data; } void transform(GrayU8 binary ) { // apply the transform to the entire image for( int y = 0; y < binary.height; y++ ) { int start = binary.startIndex + y*binary.stride; int end = start + binary.width; for( int index = start; index < end; index++ ) { if( binary.data[index] != 0 ) { int x = index-start; parameterize(candidates,x,y,_derivX.unsafe_getF(x,y),_derivY.unsafe_getF(x,y)); } } } } public void setRefineRadius( int radius ) { refine.setRadius(radius); } public int getRefineRadius() { return refine.getRadius(); } public double getMergeAngle() { return mergeAngle; } public void setMergeAngle(double mergeAngle) { this.mergeAngle = mergeAngle; } public double getMergeDistance() { return mergeDistance; } public void setMergeDistance(double mergeDistance) { this.mergeDistance = mergeDistance; } public int getMaxLines() { return maxLines; } public void setMaxLines(int maxLines) { this.maxLines = maxLines; } /** * Lines after merging/pruning has occurred */ public List getLinesMerged() { return linesMerged; } public NonMaxSuppression getExtractor() { return extractor; } public MeanShiftPeak getRefine() { return refine; } public HoughTransformParameters getParameters() { return parameters; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy