boofcv.alg.feature.detect.template.TemplateNCC Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.template;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageBase;
/**
* Template matching which uses normalized cross correlation (NCC).
*
* @author Peter Abeles
*/
public abstract class TemplateNCC >
implements TemplateIntensityImage.EvaluatorMethod
{
TemplateIntensityImage o;
@Override
public void initialize( TemplateIntensityImage owner ) {
this.o = owner;
setupTemplate(o.template);
}
/**
* Precompres template statistics here
*/
public abstract void setupTemplate( T template );
public static class F32 extends TemplateNCC {
float area;
float templateMean;
float templateSigma;
@Override
public float evaluate(int tl_x, int tl_y) {
float top = 0;
float imageMean = 0;
float imageSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
for (int x = 0; x < o.template.width; x++) {
imageMean += o.image.data[imageIndex++];
}
}
imageMean /= area;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
float templateVal = o.template.data[templateIndex++];
float diff = o.image.data[imageIndex++] - imageMean;
imageSigma += diff*diff;
top += diff*(templateVal-templateMean);
}
}
imageSigma = (float)Math.sqrt(imageSigma/area);
// technically top should be divided by area, but that won't change the solution
return top/(imageSigma*templateSigma);
}
@Override
public float evaluateMask(int tl_x, int tl_y) {
float top = 0;
float imageMean = 0;
float imageSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
for (int x = 0; x < o.template.width; x++) {
imageMean += o.image.data[imageIndex++];
}
}
imageMean /= area;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
int templateIndex = o.template.startIndex + y * o.template.stride;
int maskIndex = o.mask.startIndex + y * o.mask.stride;
for (int x = 0; x < o.template.width; x++) {
float templateVal = o.template.data[templateIndex++];
float diff = o.image.data[imageIndex++] - imageMean;
imageSigma += diff*diff;
top += o.mask.data[maskIndex++]*diff*(templateVal-templateMean);
}
}
imageSigma = (float)Math.sqrt(imageSigma/area);
// technically top should be divided by area, but that won't change the solution
return top/(imageSigma*templateSigma);
}
@Override
public void setupTemplate(GrayF32 template) {
area = o.template.width*o.template.height;
templateMean = 0;
for (int y = 0; y < o.template.height; y++) {
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
templateMean += o.template.data[templateIndex++];
}
}
templateMean /= area;
templateSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
float diff = o.template.data[templateIndex++] - templateMean;
templateSigma += diff*diff;
}
}
templateSigma = (float)Math.sqrt(templateSigma/area);
}
}
public static class U8 extends TemplateNCC {
float area;
float templateMean;
float templateSigma;
@Override
public float evaluate(int tl_x, int tl_y) {
float top = 0;
int imageSum = 0;
float imageMean = 0;
float imageSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
for (int x = 0; x < o.template.width; x++) {
imageSum += o.image.data[imageIndex++] & 0xFF;
}
}
imageMean = imageSum / area;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
int templateVal = o.template.data[templateIndex++] & 0xFF;
float diff = (o.image.data[imageIndex++] & 0xFF) - imageMean;
imageSigma += diff * diff;
top += diff * (templateVal - templateMean);
}
}
imageSigma = (float) Math.sqrt(imageSigma / area);
// technically top should be divided by area, but that won't change the solution
return top / (imageSigma * templateSigma);
}
@Override
public float evaluateMask(int tl_x, int tl_y) {
float top = 0;
int imageSum = 0;
float imageMean = 0;
float imageSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
for (int x = 0; x < o.template.width; x++) {
imageSum += o.image.data[imageIndex++] & 0xFF;
}
}
imageMean = imageSum / area;
for (int y = 0; y < o.template.height; y++) {
int imageIndex = o.image.startIndex + (tl_y + y) * o.image.stride + tl_x;
int templateIndex = o.template.startIndex + y * o.template.stride;
int maskIndex = o.mask.startIndex + y * o.mask.stride;
for (int x = 0; x < o.template.width; x++) {
int templateVal = o.template.data[templateIndex++] & 0xFF;
int m = o.mask.data[maskIndex++] & 0xFF;
float diff = (o.image.data[imageIndex++] & 0xFF) - imageMean;
imageSigma += diff * diff;
top += m * diff * (templateVal - templateMean);
}
}
imageSigma = (float) Math.sqrt(imageSigma / area);
// technically top should be divided by area, but that won't change the solution
return top / (imageSigma * templateSigma);
}
@Override
public void setupTemplate(GrayU8 template) {
area = o.template.width*o.template.height;
templateMean = 0;
for (int y = 0; y < o.template.height; y++) {
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
templateMean += o.template.data[templateIndex++] & 0xFF;
}
}
templateMean /= area;
templateSigma = 0;
for (int y = 0; y < o.template.height; y++) {
int templateIndex = o.template.startIndex + y * o.template.stride;
for (int x = 0; x < o.template.width; x++) {
float diff = (o.template.data[templateIndex++] & 0xFF) - templateMean;
templateSigma += diff*diff;
}
}
templateSigma = (float)Math.sqrt(templateSigma/area);
}
}
@Override
public boolean isBorderProcessed() {
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy