boofcv.abst.feature.dense.DescribeImageDenseSift Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.feature.dense;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.feature.dense.DescribeDenseSiftAlg;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.factory.filter.derivative.FactoryDerivative;
import boofcv.struct.feature.TupleDesc_F64;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import georegression.struct.point.Point2D_I32;
import java.util.List;
/**
* High level wrapper around {@link DescribeDenseSiftAlg} for {@link DescribeImageDense}
*
* @author Peter Abeles
*/
public class DescribeImageDenseSift, D extends ImageGray>
implements DescribeImageDense
{
// dense SIFT implementation
DescribeDenseSiftAlg alg;
// computes the image gradient
ImageGradient gradient;
// type of input image
ImageType inputType;
// period in pixels at scale of 1
double periodX;
double periodY;
// storage for the rescaled input image and its derivatives
D derivX;
D derivY;
/**
*
* @param alg Reference to the algorithm that is wrapped
* @param periodX How often the image is samples in pixels. X-axis
* @param periodY How often the image is samples in pixels. Y-axis
* @param inputType Type of input image
*/
public DescribeImageDenseSift(DescribeDenseSiftAlg alg,
double periodX , double periodY ,
Class inputType ) {
this.alg = alg;
this.periodX = periodX;
this.periodY = periodY;
this.inputType = ImageType.single(inputType);
Class gradientType = alg.getDerivType();
gradient = FactoryDerivative.three(inputType,gradientType);
derivX = GeneralizedImageOps.createSingleBand(gradientType,1,1);
derivY = GeneralizedImageOps.createSingleBand(gradientType,1,1);
}
@Override
public void process(T input) {
alg.setPeriodColumns(periodX);
alg.setPeriodRows(periodY);
derivX.reshape(input.width,input.height);
derivY.reshape(input.width,input.height);
gradient.process(input,derivX,derivY);
alg.setImageGradient(derivX,derivY);
alg.process();
}
@Override
public List getDescriptions() {
return alg.getDescriptors().toList();
}
@Override
public List getLocations() {
return alg.getLocations().toList();
}
@Override
public ImageType getImageType() {
return inputType;
}
@Override
public TupleDesc_F64 createDescription() {
return new TupleDesc_F64(alg.getDescriptorLength());
}
@Override
public Class getDescriptionType() {
return TupleDesc_F64.class;
}
public DescribeDenseSiftAlg getAlg() {
return alg;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy