boofcv.abst.feature.detect.line.HoughGradient_to_DetectLine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.feature.detect.line;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.feature.detect.edge.GGradientToEdgeFeatures;
import boofcv.alg.feature.detect.line.HoughTransformGradient;
import boofcv.alg.filter.binary.ThresholdImageOps;
import boofcv.alg.filter.derivative.GImageDerivativeOps;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.factory.filter.derivative.FactoryDerivative;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import georegression.struct.line.LineParametric2D_F32;
import java.util.List;
/**
* Converts {@link HoughTransformGradient} into {@link DetectLine}
*
*
* USAGE NOTES: Blurring the image prior to processing can often improve performance.
* Results will not be perfect and to detect all the obvious lines in the image several false
* positives might be returned.
*
*
* @see HoughTransformGradient
* @see boofcv.alg.feature.detect.line.HoughParametersFootOfNorm
*
* @author Peter Abeles
*/
public class HoughGradient_to_DetectLine, D extends ImageGray>
implements DetectLine
{
HoughTransformGradient hough;
// computes image gradient
ImageGradient gradient;
D derivX, derivY;
// storage for gradient intensity image
GrayF32 edgeIntensity = new GrayF32(1,1);
GrayF32 suppressed = new GrayF32(1,1);
// storage for edge binary image
GrayU8 binary = new GrayU8(1,1);
// threshold for intensity image
float thresholdEdge = 20;
// should it apply non-max or not
boolean nonMaxSuppression=true;
Class inputType;
Class derivType;
public HoughGradient_to_DetectLine( HoughTransformGradient hough, ImageGradient gradient,
Class inputType ) {
this.hough = hough;
this.gradient = gradient;
this.inputType = inputType;
this.derivType = GImageDerivativeOps.getDerivativeType(inputType);
derivX = GeneralizedImageOps.createSingleBand(derivType,1,1);
derivY = GeneralizedImageOps.createSingleBand(derivType,1,1);
}
public HoughGradient_to_DetectLine( HoughTransformGradient hough, Class inputType ) {
this(hough, FactoryDerivative.prewitt(inputType,(Class)null), inputType);
}
@Override
public List detect(I input) {
gradient.process(input,derivX,derivY);
GGradientToEdgeFeatures.intensityAbs(derivX, derivY, edgeIntensity);
if( nonMaxSuppression ) {
GGradientToEdgeFeatures.nonMaxSuppressionCrude4(edgeIntensity, derivX, derivY, suppressed);
ThresholdImageOps.threshold(suppressed, binary, thresholdEdge, false);
} else {
ThresholdImageOps.threshold(edgeIntensity, binary, thresholdEdge, false);
}
hough.transform(derivX,derivY,binary);
return hough.getLinesMerged();
}
@Override
public ImageType getInputType() {
return ImageType.single(inputType);
}
public float getThresholdEdge() {
return thresholdEdge;
}
public void setThresholdEdge(float thresholdEdge) {
this.thresholdEdge = thresholdEdge;
}
public GrayF32 getEdgeIntensity() {
return edgeIntensity;
}
public GrayU8 getBinary() {
return binary;
}
public HoughTransformGradient getHough() {
return hough;
}
public ImageGradient getGradient() {
return gradient;
}
public D getDerivX() {
return derivX;
}
public D getDerivY() {
return derivY;
}
public boolean isNonMaxSuppression() {
return nonMaxSuppression;
}
public void setNonMaxSuppression(boolean nonMaxSuppression) {
this.nonMaxSuppression = nonMaxSuppression;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy