boofcv.abst.feature.disparity.DisparityBlockMatchCorrelation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.feature.disparity;
import boofcv.alg.feature.disparity.DisparityBlockMatchRowFormat;
import boofcv.alg.misc.ImageNormalization;
import boofcv.alg.misc.NormalizeParameters;
import boofcv.core.image.GConvertImage;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
/**
* Wrapper around {@link StereoDisparity} that will (optionally) convert all inputs to float and normalize the input to have
* zero mean and an absolute value of at most 1.
*
* @author Peter Abeles
*/
public class DisparityBlockMatchCorrelation, D extends ImageGray, TF extends ImageGray>
extends WrapBaseBlockMatch
{
TF adjustedLeft,adjustedRight;
boolean normalizeInput=true;
NormalizeParameters parameters = new NormalizeParameters();
ImageType inputType;
public DisparityBlockMatchCorrelation(DisparityBlockMatchRowFormat alg, Class inputType ) {
super(alg);
this.inputType = ImageType.single(inputType);
adjustedLeft = alg.getInputType().createImage(1,1);
adjustedRight = alg.getInputType().createImage(1,1);
}
@Override
public void _process(T imageLeft, T imageRight) {
if( normalizeInput ) {
// normalize to reduce numerical problems, e.g. overflow/underflow
ImageNormalization.zeroMeanMaxOne(imageLeft, adjustedLeft, parameters);
// Here I'm assuming the cameras have their gain/exposure synchronized so you want to use the same
// parameters or else you might degrade your performance.
ImageNormalization.apply(imageRight, parameters, adjustedRight);
} else {
GConvertImage.convert(imageLeft,adjustedLeft);
GConvertImage.convert(imageRight,adjustedRight);
}
alg.process(adjustedLeft,adjustedRight,disparity);
}
@Override
public ImageType getInputType() {
return inputType;
}
public TF getAdjustedLeft() {
return adjustedLeft;
}
public TF getAdjustedRight() {
return adjustedRight;
}
public boolean isNormalizeInput() {
return normalizeInput;
}
public void setNormalizeInput(boolean normalizeInput) {
this.normalizeInput = normalizeInput;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy