All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.edge.impl.ImplGradientToEdgeFeatures_MT Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.edge.impl;

import boofcv.concurrency.BoofConcurrency;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayS16;
import boofcv.struct.image.GrayS32;

/**
 * 

* Implementations of the core algorithms of {@link boofcv.alg.feature.detect.edge.GradientToEdgeFeatures}. *

* *

* WARNING: Do not modify. Automatically generated by GenerateImplGradientToEdgeFeatures. *

* * @author Peter Abeles */ @SuppressWarnings("Duplicates") public class ImplGradientToEdgeFeatures_MT { static public void intensityE( GrayF32 derivX , GrayF32 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { float dx = derivX.data[indexX]; float dy = derivY.data[indexY]; intensity.data[indexI] = (float)Math.sqrt(dx*dx + dy*dy); } }); } static public void intensityAbs( GrayF32 derivX , GrayF32 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { intensity.data[indexI] = Math.abs(derivX.data[indexX]) + Math.abs(derivY.data[indexY]); } }); } static public void direction( GrayF32 derivX , GrayF32 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { float dx = derivX.data[indexX]; float dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = Math.abs(dx) < 1e-10f ? (float)(Math.PI/2.0) : (float)Math.atan(dy/dx); } }); } static public void direction2( GrayF32 derivX , GrayF32 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { float dx = derivX.data[indexX]; float dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = (float)Math.atan2(dy,dx); } }); } static public void intensityE( GrayS16 derivX , GrayS16 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; intensity.data[indexI] = (float)Math.sqrt(dx*dx + dy*dy); } }); } static public void intensityAbs( GrayS16 derivX , GrayS16 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { intensity.data[indexI] = Math.abs(derivX.data[indexX]) + Math.abs(derivY.data[indexY]); } }); } static public void direction( GrayS16 derivX , GrayS16 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = dx == 0 ? (float)(Math.PI/2.0) : (float)Math.atan((double)dy/(double)dx); } }); } static public void direction2( GrayS16 derivX , GrayS16 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = (float)Math.atan2(dy,dx); } }); } static public void intensityE( GrayS32 derivX , GrayS32 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; intensity.data[indexI] = (float)Math.sqrt(dx*dx + dy*dy); } }); } static public void intensityAbs( GrayS32 derivX , GrayS32 derivY , GrayF32 intensity ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexI = intensity.startIndex + y*intensity.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexI++ ) { intensity.data[indexI] = Math.abs(derivX.data[indexX]) + Math.abs(derivY.data[indexY]); } }); } static public void direction( GrayS32 derivX , GrayS32 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = dx == 0 ? (float)(Math.PI/2.0) : (float)Math.atan((double)dy/(double)dx); } }); } static public void direction2( GrayS32 derivX , GrayS32 derivY , GrayF32 angle ) { final int w = derivX.width; final int h = derivY.height; BoofConcurrency.loopFor(0,h,y->{ int indexX = derivX.startIndex + y*derivX.stride; int indexY = derivY.startIndex + y*derivY.stride; int indexA = angle.startIndex + y*angle.stride; int end = indexX + w; for( ; indexX < end; indexX++ , indexY++ , indexA++ ) { int dx = derivX.data[indexX]; int dy = derivY.data[indexY]; // compute the angle while avoiding divided by zero errors angle.data[indexA] = (float)Math.atan2(dy,dx); } }); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy