All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.extract.NonMaxBlockSearchRelaxed Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.extract;

import boofcv.struct.QueueCorner;
import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_I32;

/**
 * 

* Implementation of {@link NonMaxBlock} which implements a relaxed maximum rule. *

* * @author Peter Abeles */ public abstract class NonMaxBlockSearchRelaxed implements NonMaxBlock.Search { // storage for local maximums Point2D_I32 foundMax[]; Point2D_I32 foundMin[]; // threshold for intensity values when detecting minimums and maximums float thresholdMin; float thresholdMax; int radius; private QueueCorner localMin,localMax; GrayF32 img; @Override public void initialize(NonMaxBlock.Configuration configuration, GrayF32 image, QueueCorner localMin, QueueCorner localMax) { this.thresholdMin = configuration.thresholdMin; this.thresholdMax = configuration.thresholdMax; this.radius = configuration.radius; this.img = image; this.localMin = localMin; this.localMax = localMax; int w = 2* radius +1; // only declare this work space if needed if( foundMax == null || foundMax.length != w*w ) { foundMax = new Point2D_I32[w * w]; for (int i = 0; i < foundMax.length; i++) foundMax[i] = new Point2D_I32(); foundMin = new Point2D_I32[w * w]; for (int i = 0; i < foundMin.length; i++) foundMin[i] = new Point2D_I32(); } } public static class Max extends NonMaxBlockSearchRelaxed { @Override public void searchBlock( int x0 , int y0 , int x1 , int y1 ) { int numPeaks = 0; float peakVal = thresholdMax; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v > peakVal ) { peakVal = v; foundMax[0].set(x, y); numPeaks = 1; } else if( v == peakVal ) { foundMax[numPeaks++].set(x, y); } } } if( numPeaks > 0 && peakVal != Float.MAX_VALUE ) { for( int i = 0; i < numPeaks; i++ ) { Point2D_I32 p = foundMax[i]; checkLocalMax(p.x,p.y,peakVal,img); } } } @Override public boolean isDetectMinimums() { return false; } @Override public boolean isDetectMaximums() { return true; } @Override public NonMaxBlock.Search newInstance() { return new Max(); } } public static class Min extends NonMaxBlockSearchRelaxed { @Override public void searchBlock( int x0 , int y0 , int x1 , int y1 ) { int numPeaks = 0; float peakVal = thresholdMin; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v < peakVal ) { peakVal = v; foundMin[0].set(x, y); numPeaks = 1; } else if( v == peakVal ) { foundMin[numPeaks++].set(x, y); } } } if( numPeaks > 0 && peakVal != -Float.MAX_VALUE ) { for( int i = 0; i < numPeaks; i++ ) { Point2D_I32 p = foundMin[i]; checkLocalMin(p.x, p.y, peakVal, img); } } } @Override public boolean isDetectMinimums() { return true; } @Override public boolean isDetectMaximums() { return false; } @Override public NonMaxBlock.Search newInstance() { return new Min(); } } public static class MinMax extends NonMaxBlockSearchRelaxed { @Override public void searchBlock( int x0 , int y0 , int x1 , int y1 ) { int numMinPeaks = 0; float peakMinVal = thresholdMin; int numMaxPeaks = 0; float peakMaxVal = thresholdMax; for( int y = y0; y < y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x < x1; x++ ) { float v = img.data[index++]; if( v < peakMinVal ) { peakMinVal = v; foundMin[0].set(x, y); numMinPeaks = 1; } else if( v == peakMinVal ) { foundMin[numMinPeaks++].set(x, y); } if( v > peakMaxVal ) { peakMaxVal = v; foundMax[0].set(x, y); numMaxPeaks = 1; } else if( v == peakMaxVal ) { foundMax[numMaxPeaks++].set(x, y); } } } if( numMinPeaks > 0 && peakMinVal != -Float.MAX_VALUE ) { for( int i = 0; i < numMinPeaks; i++ ) { Point2D_I32 p = foundMin[i]; checkLocalMin(p.x,p.y,peakMinVal,img); } } if( numMaxPeaks > 0 && peakMaxVal != Float.MAX_VALUE ) { for( int i = 0; i < numMaxPeaks; i++ ) { Point2D_I32 p = foundMax[i]; checkLocalMax(p.x,p.y,peakMaxVal,img); } } } @Override public boolean isDetectMinimums() { return true; } @Override public boolean isDetectMaximums() { return true; } @Override public NonMaxBlock.Search newInstance() { return new MinMax(); } } protected void checkLocalMax( int x_c , int y_c , float peakVal , GrayF32 img ) { int x0 = x_c-radius; int x1 = x_c+radius; int y0 = y_c-radius; int y1 = y_c+radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for( int y = y0; y <= y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x <= x1; x++ ) { float v = img.data[index++]; if( v > peakVal ) { // not a local maximum return; } } } localMax.append(x_c,y_c); } protected void checkLocalMin( int x_c , int y_c , float peakVal , GrayF32 img ) { int x0 = x_c-radius; int x1 = x_c+radius; int y0 = y_c-radius; int y1 = y_c+radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for( int y = y0; y <= y1; y++ ) { int index = img.startIndex + y*img.stride+x0; for( int x = x0; x <= x1; x++ ) { float v = img.data[index++]; if( v < peakVal ) { // not a local minimum return; } } } localMin.append(x_c,y_c); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy