boofcv.alg.feature.detect.line.ImageLinePruneMerge Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.line;
import georegression.metric.Distance2D_F32;
import georegression.metric.Intersection2D_F32;
import georegression.metric.UtilAngle;
import georegression.struct.line.LineParametric2D_F32;
import georegression.struct.line.LineSegment2D_F32;
import georegression.struct.point.Point2D_F32;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* @author Peter Abeles
*/
public class ImageLinePruneMerge {
List lines = new ArrayList<>();
public void reset() {
lines.clear();
}
public void add( LineParametric2D_F32 line , float intensity ) {
lines.add( new Data(line,intensity));
}
public void pruneRelative( float fraction ) {
float max = 0;
for( Data d : lines ) {
if( d.intensity > max )
max = d.intensity;
}
float threshold = max*fraction;
List filtered = new ArrayList<>();
for( Data d : lines ) {
if( d.intensity >= threshold ) {
filtered.add(d);
}
}
lines = filtered;
}
public void pruneNBest( int N ) {
if( lines.size() <= N )
return;
sortByIntensity();
List filtered = new ArrayList<>();
for( int i = 0; i < N; i++ ) {
filtered.add(lines.get(i));
}
lines = filtered;
}
private void sortByIntensity() {
Collections.sort(lines, (o1, o2) -> {
// need to sort by location to make results repeatable even if input order has been shuffled
// that happens if concurrency is turned on
if (o1.intensity < o2.intensity)
return 1;
else if (o1.intensity > o2.intensity)
return -1;
else if( o1.line.p.x < o2.line.p.x ) {
return -1;
} else if( o1.line.p.x > o2.line.p.x ) {
return 1;
} else {
return Float.compare(o1.line.p.y,o2.line.p.y);
}
});
}
public void pruneSimilar(float toleranceAngle, float toleranceDist, int imgWidth, int imgHeight) {
sortByIntensity();
float theta[] = new float[ lines.size() ];
List segments = new ArrayList<>(lines.size());
for( int i = 0; i < lines.size(); i++ ) {
Data d = lines.get(i);
LineParametric2D_F32 l = d.line;
theta[i] = UtilAngle.atanSafe(l.getSlopeY(), l.getSlopeX());
segments.add( LineImageOps.convert(l, imgWidth, imgHeight));
}
for( int i = 0; i < segments.size(); i++ ) {
LineSegment2D_F32 a = segments.get(i);
if( a == null ) continue;
for( int j = i+1; j < segments.size(); j++) {
LineSegment2D_F32 b = segments.get(j);
if( b == null )
continue;
// see if they are nearly parallel
if( UtilAngle.distHalf(theta[i],theta[j]) > toleranceAngle )
continue;
// NOTE: I don't like the way this distance metric looks. Seems arbitrary and will vary depending on
// the image size.
Point2D_F32 p = Intersection2D_F32.intersection(a, b, null);
// If they intersect inside the image they are much more likely to be the same line
boolean close = false;
if( p != null ) {
if( p.x >= 0 && p.y >= 0 && p.x < imgWidth && p.y < imgHeight) {
close = true;
}
}
// While a bit arbitrary look at the distance at the image border as a measure of how visually
// similar two lines are
if( !close ) {
// now just see if they are very close
float distA = Distance2D_F32.distance(a, b.a);
float distB = Distance2D_F32.distance(a, b.b);
if (distA > toleranceDist && distB > toleranceDist) {
continue;
}
distA = Distance2D_F32.distance(b, b.a);
distB = Distance2D_F32.distance(b, b.b);
if (distA > toleranceDist && distB > toleranceDist) {
continue;
}
close = true;
}
if( close ) {
if (lines.get(j).intensity > lines.get(i).intensity) {
lines.get(i).intensity = lines.get(j).intensity;
}
segments.set(j, null);
}
}
}
List filtered = new ArrayList<>();
for( int i = 0; i < segments.size(); i++ ) {
if( segments.get(i) != null ) {
filtered.add( lines.get(i));
}
}
lines = filtered;
}
public List createList( List ret ) {
if( ret == null )
ret = new ArrayList<>();
else
ret.clear();
for( Data d : lines ) {
ret.add(d.line);
}
return ret;
}
private static class Data
{
LineParametric2D_F32 line;
float intensity;
private Data(LineParametric2D_F32 line, float intensity) {
this.line = line;
this.intensity = intensity;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy