boofcv.alg.feature.disparity.sgm.SgmStereoDisparity Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.disparity.sgm;
import boofcv.struct.image.*;
/**
* Base class for SGM stereo implementations. It combines the cost computation, cost aggregation, and disparity
* selector steps. Sub-pixel can be optionally computed afterwards.
*
* NOTE: [1] suggests applying a median filter. This is not done by any of this class' children.
*
* [1] Hirschmuller, Heiko. "Stereo processing by semiglobal matching and mutual information."
* IEEE Transactions on pattern analysis and machine intelligence 30.2 (2007): 328-341.
*
* @author Peter Abeles
*/
public abstract class SgmStereoDisparity, C extends ImageBase>
{
// Defines the disparity search range
protected int disparityMin = 0; // minimum disparity considered
protected int disparityRange = 0; // number of disparity values considered
// These perform different steps in the SGM algorithm
protected SgmDisparityCost sgmCost;
protected SgmCostAggregation aggregation = new SgmCostAggregation();
protected SgmDisparitySelector selector;
protected SgmHelper helper = new SgmHelper();
// Cost tensor. See SgmDisparityCost
protected Planar costYXD = new Planar<>(GrayU16.class,1,1,1);
// Storage for found disparity
protected GrayU8 disparity = new GrayU8(1,1);
public SgmStereoDisparity(SgmDisparityCost sgmCost, SgmDisparitySelector selector) {
this.sgmCost = sgmCost;
this.selector = selector;
}
/**
* Computes disparity
*
* @param left (Input) left rectified stereo image
* @param right (Input) right rectified stereo image
*/
public abstract void process( T left , T right );
// TODO remove need to compute U8 first
public void subpixel( GrayU8 src , GrayF32 dst ) {
dst.reshape(src);
Planar aggregatedYXD = aggregation.getAggregated();
for (int y = 0; y < aggregatedYXD.getNumBands(); y++) {
GrayU16 costXD = aggregatedYXD.getBand(y);
for (int x = 0; x < disparityMin; x++) {
dst.unsafe_set(x,y,disparityRange); // make as invalid
}
for (int x = disparityMin; x < costXD.height; x++) {
int localMaxRange = helper.localDisparityRangeLeft(x);
int d = src.unsafe_get(x,y);
float subpixel;
if( d > 0 && d < localMaxRange-1) {
int adjX = x - disparityMin; // see how cost tensor is defined
int c0 = costXD.unsafe_get(d-1,adjX);
int c1 = costXD.unsafe_get(d ,adjX);
int c2 = costXD.unsafe_get(d+1,adjX);
float offset = (float)(c0-c2)/(float)(2*(c0-2*c1+c2));
subpixel = d + offset;
} else {
subpixel = d;
}
dst.unsafe_set(x,y,subpixel);
}
}
}
public GrayU8 getDisparity() {
return disparity;
}
public SgmDisparityCost getSgmCost() {
return sgmCost;
}
public SgmCostAggregation getAggregation() {
return aggregation;
}
public Planar getCostYXD() {
return costYXD;
}
public int getInvalidDisparity() {
return selector.getInvalidDisparity();
}
public int getDisparityMin() {
return disparityMin;
}
public void setDisparityMin(int disparityMin) {
this.disparityMin = disparityMin;
}
public int getDisparityRange() {
return disparityRange;
}
public void setDisparityRange(int disparityRange) {
this.disparityRange = disparityRange;
}
public SgmDisparitySelector getSelector() {
return selector;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy