All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.disparity.sgm.SgmStereoDisparity Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.disparity.sgm;

import boofcv.struct.image.*;

/**
 * Base class for SGM stereo implementations. It combines the cost computation, cost aggregation, and disparity
 * selector steps. Sub-pixel can be optionally computed afterwards.
 *
 * 

NOTE: [1] suggests applying a median filter. This is not done by any of this class' children.

* *

[1] Hirschmuller, Heiko. "Stereo processing by semiglobal matching and mutual information." * IEEE Transactions on pattern analysis and machine intelligence 30.2 (2007): 328-341.

* * @author Peter Abeles */ public abstract class SgmStereoDisparity, C extends ImageBase> { // Defines the disparity search range protected int disparityMin = 0; // minimum disparity considered protected int disparityRange = 0; // number of disparity values considered // These perform different steps in the SGM algorithm protected SgmDisparityCost sgmCost; protected SgmCostAggregation aggregation = new SgmCostAggregation(); protected SgmDisparitySelector selector; protected SgmHelper helper = new SgmHelper(); // Cost tensor. See SgmDisparityCost protected Planar costYXD = new Planar<>(GrayU16.class,1,1,1); // Storage for found disparity protected GrayU8 disparity = new GrayU8(1,1); public SgmStereoDisparity(SgmDisparityCost sgmCost, SgmDisparitySelector selector) { this.sgmCost = sgmCost; this.selector = selector; } /** * Computes disparity * * @param left (Input) left rectified stereo image * @param right (Input) right rectified stereo image */ public abstract void process( T left , T right ); // TODO remove need to compute U8 first public void subpixel( GrayU8 src , GrayF32 dst ) { dst.reshape(src); Planar aggregatedYXD = aggregation.getAggregated(); for (int y = 0; y < aggregatedYXD.getNumBands(); y++) { GrayU16 costXD = aggregatedYXD.getBand(y); for (int x = 0; x < disparityMin; x++) { dst.unsafe_set(x,y,disparityRange); // make as invalid } for (int x = disparityMin; x < costXD.height; x++) { int localMaxRange = helper.localDisparityRangeLeft(x); int d = src.unsafe_get(x,y); float subpixel; if( d > 0 && d < localMaxRange-1) { int adjX = x - disparityMin; // see how cost tensor is defined int c0 = costXD.unsafe_get(d-1,adjX); int c1 = costXD.unsafe_get(d ,adjX); int c2 = costXD.unsafe_get(d+1,adjX); float offset = (float)(c0-c2)/(float)(2*(c0-2*c1+c2)); subpixel = d + offset; } else { subpixel = d; } dst.unsafe_set(x,y,subpixel); } } } public GrayU8 getDisparity() { return disparity; } public SgmDisparityCost getSgmCost() { return sgmCost; } public SgmCostAggregation getAggregation() { return aggregation; } public Planar getCostYXD() { return costYXD; } public int getInvalidDisparity() { return selector.getInvalidDisparity(); } public int getDisparityMin() { return disparityMin; } public void setDisparityMin(int disparityMin) { this.disparityMin = disparityMin; } public int getDisparityRange() { return disparityRange; } public void setDisparityRange(int disparityRange) { this.disparityRange = disparityRange; } public SgmDisparitySelector getSelector() { return selector; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy