All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.orientation.OrientationAverage Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.orientation;

import boofcv.abst.feature.orientation.OrientationGradient;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ImageRectangle;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.image.ImageGray;


/**
 * 

* Computes the orientation of a region by summing up the derivative along each axis independently * then computing the direction fom the sum. If weighted a Gaussian kernel centered around the targeted * pixel is used. *

* * @author Peter Abeles */ public abstract class OrientationAverage> implements OrientationGradient { // image gradient protected D derivX; protected D derivY; // local variable used to define the region being examined. // this makes it easy to avoid going outside the image protected ImageRectangle rect = new ImageRectangle(); protected double objectToSample; protected int sampleRadius; // the radius at this scale protected int radiusScale; // if it uses weights or not protected boolean isWeighted; // optional weights protected Kernel2D_F32 weights; protected OrientationAverage(double objectRadiusToScale, boolean weighted) { this.objectToSample = objectRadiusToScale; isWeighted = weighted; } public int getSampleRadius() { return sampleRadius; } public void setSampleRadius(int sampleRadius) { this.sampleRadius = sampleRadius; setObjectRadius(sampleRadius); } public Kernel2D_F32 getWeights() { return weights; } @Override public void setObjectRadius(double radius) { radiusScale = (int)Math.ceil(radius*objectToSample); if( isWeighted ) { weights = FactoryKernelGaussian.gaussian(2,true, 32, -1,radiusScale); } } @Override public void setImage(D derivX, D derivY) { this.derivX = derivX; this.derivY = derivY; } @Override public double compute(double X, double Y) { int c_x = (int)X; int c_y = (int)Y; // compute the visible region while taking in account // the image borders rect.x0 = c_x-radiusScale; rect.y0 = c_y-radiusScale; rect.x1 = c_x+radiusScale+1; rect.y1 = c_y+radiusScale+1; BoofMiscOps.boundRectangleInside(derivX,rect); if( weights == null ) return computeUnweightedScore(); else return computeWeightedScore(c_x,c_y); } /** * Compute the score without using the optional weights */ protected abstract double computeUnweightedScore(); /** * Compute the score using the weighting kernel. */ protected abstract double computeWeightedScore(int c_x , int c_y ); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy