boofcv.alg.feature.orientation.OrientationAverage Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.orientation;
import boofcv.abst.feature.orientation.OrientationGradient;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ImageRectangle;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.image.ImageGray;
/**
*
* Computes the orientation of a region by summing up the derivative along each axis independently
* then computing the direction fom the sum. If weighted a Gaussian kernel centered around the targeted
* pixel is used.
*
*
* @author Peter Abeles
*/
public abstract class OrientationAverage> implements OrientationGradient {
// image gradient
protected D derivX;
protected D derivY;
// local variable used to define the region being examined.
// this makes it easy to avoid going outside the image
protected ImageRectangle rect = new ImageRectangle();
protected double objectToSample;
protected int sampleRadius;
// the radius at this scale
protected int radiusScale;
// if it uses weights or not
protected boolean isWeighted;
// optional weights
protected Kernel2D_F32 weights;
protected OrientationAverage(double objectRadiusToScale, boolean weighted) {
this.objectToSample = objectRadiusToScale;
isWeighted = weighted;
}
public int getSampleRadius() {
return sampleRadius;
}
public void setSampleRadius(int sampleRadius) {
this.sampleRadius = sampleRadius;
setObjectRadius(sampleRadius);
}
public Kernel2D_F32 getWeights() {
return weights;
}
@Override
public void setObjectRadius(double radius) {
radiusScale = (int)Math.ceil(radius*objectToSample);
if( isWeighted ) {
weights = FactoryKernelGaussian.gaussian(2,true, 32, -1,radiusScale);
}
}
@Override
public void setImage(D derivX, D derivY) {
this.derivX = derivX;
this.derivY = derivY;
}
@Override
public double compute(double X, double Y) {
int c_x = (int)X;
int c_y = (int)Y;
// compute the visible region while taking in account
// the image borders
rect.x0 = c_x-radiusScale;
rect.y0 = c_y-radiusScale;
rect.x1 = c_x+radiusScale+1;
rect.y1 = c_y+radiusScale+1;
BoofMiscOps.boundRectangleInside(derivX,rect);
if( weights == null )
return computeUnweightedScore();
else
return computeWeightedScore(c_x,c_y);
}
/**
* Compute the score without using the optional weights
*/
protected abstract double computeUnweightedScore();
/**
* Compute the score using the weighting kernel.
*/
protected abstract double computeWeightedScore(int c_x , int c_y );
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy