boofcv.alg.background.moving.BackgroundMovingGaussian_PL Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.moving;
import boofcv.alg.interpolate.InterpolatePixelMB;
import boofcv.alg.interpolate.InterpolationType;
import boofcv.alg.misc.GImageMiscOps;
import boofcv.core.image.FactoryGImageMultiBand;
import boofcv.core.image.GImageMultiBand;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.border.BorderType;
import boofcv.struct.distort.Point2Transform2Model_F32;
import boofcv.struct.image.*;
import georegression.struct.InvertibleTransform;
/**
* Implementation of {@link BackgroundMovingGaussian} for {@link Planar}.
*
* @author Peter Abeles
*/
public class BackgroundMovingGaussian_PL, Motion extends InvertibleTransform>
extends BackgroundMovingGaussian,Motion>
{
// interpolates the input image
protected InterpolatePixelMB> interpolateInput;
// interpolates the background image
protected InterpolatePixelMB> interpolationBG;
// wrappers which provide abstraction across image types
protected GImageMultiBand inputWrapper;
// storage for multi-band pixel values
protected float[] pixelBG;
protected float[] pixelInput;
// background is composed of bands*2 channels. even = mean, odd = variance
Planar background;
/**
* Configurations background removal.
*
* @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05
* @param threshold Threshold for background. Consult a chi-square table for reasonably values.
* 10 to 16 for 1 to 3 bands.
* @param transform Used to apply motion model
* @param interpType Type of interpolation. BILINEAR recommended for accuracy. NEAREST_NEIGHBOR for speed. .
* @param imageType Type of input image.
*/
public BackgroundMovingGaussian_PL(float learnRate, float threshold,
Point2Transform2Model_F32 transform,
InterpolationType interpType,
ImageType> imageType)
{
super(learnRate, threshold, transform, imageType);
int numBands = imageType.getNumBands();
this.interpolateInput = FactoryInterpolation.createPixelMB(0, 255,
InterpolationType.BILINEAR, BorderType.EXTENDED, imageType);
background = new Planar<>(GrayF32.class,1,1,2*numBands);
this.interpolationBG = FactoryInterpolation.createPixelMB(
0, 255, interpType, BorderType.EXTENDED, background.getImageType());
this.interpolationBG.setImage(background);
inputWrapper = FactoryGImageMultiBand.create(imageType);
pixelBG = new float[2*numBands];
pixelInput = new float[numBands];
}
@Override
public void initialize(int backgroundWidth, int backgroundHeight, Motion homeToWorld) {
background.reshape(backgroundWidth,backgroundHeight);
for (int i = 0; i < background.getNumBands(); i+=2) {
GImageMiscOps.fill(background.getBand(i),0);
GImageMiscOps.fill(background.getBand(i+1),-1);
}
this.homeToWorld.set(homeToWorld);
this.homeToWorld.invert(worldToHome);
this.backgroundWidth = backgroundWidth;
this.backgroundHeight = backgroundHeight;
}
@Override
public void reset() {
for (int i = 0; i < background.getNumBands(); i+=2) {
GImageMiscOps.fill(background.getBand(i),0);
GImageMiscOps.fill(background.getBand(i+1),-1);
}
}
@Override
protected void updateBackground(int x0, int y0, int x1, int y1, Planar frame) {
transform.setModel(worldToCurrent);
interpolateInput.setImage(frame);
float minusLearn = 1.0f - learnRate;
final int numBands = background.getNumBands()/2;
for (int y = y0; y < y1; y++) {
int indexBG = background.startIndex + y*background.stride + x0;
for (int x = x0; x < x1; x++, indexBG++ ) {
transform.compute(x,y,work);
if( work.x >= 0 && work.x < frame.width && work.y >= 0 && work.y < frame.height) {
interpolateInput.get(work.x,work.y,pixelInput);
for (int band = 0; band < numBands; band++) {
GrayF32 backgroundMean = background.getBand(band*2);
GrayF32 backgroundVar = background.getBand(band*2+1);
float inputValue = pixelInput[band];
float meanBG = backgroundMean.data[indexBG];
float varianceBG = backgroundVar.data[indexBG];
if( varianceBG < 0) {
backgroundMean.data[indexBG] = inputValue;
backgroundVar.data[indexBG] = initialVariance;
} else {
float diff = meanBG-inputValue;
backgroundMean.data[indexBG] = minusLearn*meanBG + learnRate*inputValue;
backgroundVar.data[indexBG] = minusLearn*varianceBG + learnRate*diff*diff;
}
}
}
}
}
}
@Override
protected void _segment(Motion currentToWorld, Planar frame, GrayU8 segmented) {
transform.setModel(currentToWorld);
inputWrapper.wrap(frame);
final int numBands = background.getNumBands()/2;
float adjustedMinimumDifference = minimumDifference*numBands;
for (int y = 0; y < frame.height; y++) {
int indexFrame = frame.startIndex + y*frame.stride;
int indexSegmented = segmented.startIndex + y*segmented.stride;
for (int x = 0; x < frame.width; x++, indexFrame++ , indexSegmented++ ) {
transform.compute(x,y,work);
escapeIf:if( work.x >= 0 && work.x < background.width && work.y >= 0 && work.y < background.height) {
interpolationBG.get(work.x,work.y,pixelBG);
inputWrapper.getF(indexFrame,pixelInput);
float mahalanobis = 0;
for (int band = 0; band < numBands; band++) {
float meanBG = pixelBG[band*2];
float varBG = pixelBG[band*2+1];
if (varBG < 0) {
segmented.data[indexSegmented] = unknownValue;
break escapeIf;
} else {
float diff = meanBG - pixelInput[band];
mahalanobis += diff * diff / varBG;
}
}
if (mahalanobis <= threshold) {
segmented.data[indexSegmented] = 0;
} else {
if( minimumDifference > 0 ) {
float sumAbsDiff = 0;
for (int band = 0; band < numBands; band++) {
sumAbsDiff += Math.abs(pixelBG[band * 2] - pixelInput[band]);
}
if (sumAbsDiff >= adjustedMinimumDifference) {
segmented.data[indexSegmented] = 1;
} else {
segmented.data[indexSegmented] = 0;
}
} else {
segmented.data[indexSegmented] = 1;
}
}
} else {
// there is no background here. Just mark it as not moving to avoid false positives
segmented.data[indexSegmented] = unknownValue;
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy